The Potential of GeoGebra Software for Providing Mathematical Communication in the Light of Pre-service Teachers' Views

–The purpose of this study was to investigate the potential of GeoGebra software for providing mathematical communication in the light of pre-service teachers' views. The research was designed as singlecase holistic design and conducted with 16 pre-service mathematics teachers. An open-ended questionnaire was used as a data collection tool. The obtained qualitative data were analyzed by using content analysis. As a result of analysis, it was determined that GeoGebra software directly contributed to provide mathematical communication both by helping the use of the language of mathematics correctly and by contributing to provide dynamic connections between multiple representations of concepts. It was also found that GeoGebra software contributed to provide mathematical communication not only by helping the use of the language of mathematics in self-confidence but also the development of mathematical connections skills. In addition, It was detected that GeoGebra software contributed to provide mathematical communication by supplying discussion and cooperation learning environment. It was determined that the GeoGebra software had a significant potential to provide mathematical communication in the light of pre-service teachers' views

___

Ayvaz Reis, Z., & Özdemir, Ş. (2010). Using Geogebra as an information technology tool: Parabola teaching. Procedia-Social and Behavioral Sciences, 9, 565-572.

Baki, A. (2008). Kuramdan uygulamaya matematik eğitimi (4. Basım). Ankara: Harf Eğitim Yayıncılık.

Brendefur, J., & Frykholm, J. (2000). Promoting mathematical communication in the classroom: Two preservice teachers' conceptions and practices. Journal of Mathematics Teacher Education, 3(2), 125-153.

Brenner, M. E. (1998). Development of mathematical communication in problem solving groups by language minority students. Bilingual Research Journal, 22(2-4), 149-174.

Choi, K. S. (2010). Motivating students in learning mathematics with GeoGebra. Annals Computer Science Series, 8(2), 65-76

Cooke, B. D., & Buchholz, D. (2005). Mathematical communication in the classroom: A teacher makes a difference. Early Childhood Education Journal, 32(6), 365-369.

Creswell, J.W. (2007). Qualitative inquiry and research design: Choosing among five traditions (2nd ed.). London: Sage.

Dienes, Z. P. (1971). An example of the passage from the concrete to the manipulation of formal systems. Educational Studies in Mathematics, 3(3), 337-352.

Dikovic, L. (2009a). Applications GeoGebra into teaching some topics of mathematics at the college level. Computer Science and Information Systems, 6(2), 191-203.

Dikovic, L. (2009b). Implementing dynamic mathematics resources with GeoGebra at the college level. International Journal of Emerging Technologies in Learning (iJET), 4(3), 51-54.

Furner, J. M., & Marinas, C. A. (2012). Connecting geometry, measurement, and algebra using GeoGebra for the elementary grades. Twenty-fourth Annual International Conference on Technology in Collegiate Mathematics (pp. 63-72). Orlando, Florida: Pearson Education Inc.

Hirschfeld-Cotton, K. (2008). Mathematical communication, conceptual understanding, and students' attitudes toward mathematics. Unpublished Master thesis. University of Nebraska, Lincoln, USA.

Hohenwarter, J., & Hohenwarter, M. (2012). Introduction to GeoGebra4. Available from www.geogebra.org.

Hohenwarter, M., & Jones, K. (2007). Ways of linking geometry and algebra, the case of Geogebra. Proceedings of the British Society for Research into Learning Mathematics, 27(3), 126-131.

Hohenwarter, M., Hohenwarter, J., Kreis, Y., & Lavicza, Z. (2008). Teaching and learning calculus with free dynamic mathematics software GeoGebra. In 11th International Congress on Mathematical Education. Monterrey, Nuevo Leon, Mexico.

Kutluca, T., & Zengin, Y. (2011). Matematik öğretiminde GeoGebra kullanımı hakkında öğrenci görüşlerinin değerlendirilmesi. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 17, 160-172.

Lipeikiene, J. (2009). Development of a Mathematical Communication Curriculum. Information Sciences, 50, 107-111.

McGuffey, W. C. (2015). Using Strategy Games and GeoGebra to Develop Understanding of Mathematical Language. MathAMATYC Educator, 6 (3), 51-60.

McMillan, J., & Schumacher, S. (2010). Research in education: Evidence-based inquiry (7th ed.). Boston, MA: Pearson.

Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education (2nd ed.). San Francisco: Jossey Bass Publishers.

Milli Eğitim Bakanlığı [MEB], (2013). Ortaöğretim matematik dersi (9, 10, 11 ve 12. sınıflar) öğretim programı. Ankara.

National Council of Teachers of Mathematics [NCTM], (2005). Principles and standarts for school mathematics. Reston, VA: NCTM.

Ng, O. L. (2016). Comparing calculus communication across static and dynamic environments using a multimodal approach. Digital Experiences in Mathematics Education, 2(2), 1-27.

Slavin, R. E. (1995). Cooperative learning theory, research, and practice (2nd ed.). Needham Heights, MA: Allyn and Bacon.

Stahl, G., Çakir, M. P., Weimar, S., Weusijana, B. K., & Ou, J. X. (2010). Enhancing mathematical communication for virtual math teams. Acta Didactica Napocensia, 3(2), 101-114.

Yackel, E., Cobb, P. & Wood, T. (1993). Developing a basis for mathematical communication within small groups. In T. Wood, P. Cobb, E. Yackel, & D. Dillon (Eds.), Rethinking elementary school mathematics: Insights and issues, Journal for Research in Mathematics Education Monograph No. 6 (pp. 33 - 44). Reston, VA: NCTM.

Yıldırım, A., & Şimşek, H. (2011). Sosyal bilimlerde nitel araştırma yöntemleri (8. bs.). Ankara: Seçkin Yayıncılık.

Yin, R. (1981). The case study crisis: Some answers. Administrative Science Quarterly,26(1), 58-65.

Yin, R.K.(2003). Case study research (Design and Methods).California: Sage Publication

Zengin, Y. (2011). Dinamik matematik yazılımı GeoGebra’nın öğrencilerin başarılarına ve tutumlarına etkisi. Yayımlanmamış Yüksek Lisans Tezi. Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü. Kahramanmaraş.

Zengin, Y. (2015). Dinamik matematik yazılımı destekli işbirlikli öğrenme modelinin ortaöğretim cebir konularının öğrenimi ve öğretiminde uygulanabilirliğinin incelenmesi. Yayımlanmamış doktora tezi. Atatürk Üniversitesi, Erzurum.