YÜRÜYEN DALGALI TÜP KUVVETLENDİRİCİLERİNDE İLETİM SABİTLERİNİN İNCELENMESİ

Bu çalışmada tipik bir yürüyen dalgalı tüp kuvvetlendiricisindeki (TWT) elektron demeti ile elektromanyetik dalganın etkileşimi sonucu elde edilen TWT iletim sabitlerinin davranışı incelenmiştir. Öncelikle, TWT demet dalga etkileşiminden dispersiyon denklemi çıkarılmıştır. Elde edilen denklem, Pierce normalizasyon parametreleri kullanılarak basitleştirilmiştir. Farklı Pierce normalizasyon parametre takımları için TWT’ye ait tüm dalga tipi çözümlerin davranışları TWT’nin artırılmış iletim sabitlerine bakılarak tespit edilmiştir. Bu bağlamda üç ana durum ele alınmıştır. Bu üç ana durumun her birinde sırasıyla sadece senkronizasyon, uzay yükü ve devre kaybı parametreleri belirli bir değer aralıklarında süpürülmüştür ve ilgili diğer normalizasyon parametreleri sabit alınmıştır. Böylece TWT’deki dalga tipi çözümlerin artırılmış iletim sabitlerinin kök-yer eğrileri derinlemesine incelenmiştir. 

INVESTIGATION OF PROPAGATION CONSTANTS IN TRAVELING WAVE TUBE AMPLIFIERS

In this study, behavior of TWT propagation constants obtained from interaction of electron beam and electromagnetic wave in a typical traveling wave tube amplifiers is analyzed. First of all, dispersion equation is derived from TWT beam- wave interaction. Acquired equation is simplified by using Pierce normalization parameters. Behaviors of all wave-type solutions related to TWT are determined for different Pierce normalization parameter sets by looking incremental propagation constants of TWT. In this context, three main cases are considered. In each of three main cases, only synchronization, space charge and circuit loss parameters are swept in a certain value range and other related normalization parameters are taken constant, respectively. Hence, root-locus curves of incremental propagation constants of wave type solutions in TWT are deeply analyzed.

___

  • Basu, B. N., (1996). Electromagnetic theory and applications in beam-wave electronics. Singapore, World Scientific.
  • Birdsall, C. K., Brewer, G. R. (1954). Traveling wave tube characteristics for finite values of C. Transactions of the IRE Professional Group on Electron Devices, 1(3), 1-11.
  • Booske J. H., Converse M. C., (2004). Insights from one-dimensional linearized pierce theory about wideband traveling-wave tubes with high space charge, IEEE Trans. Plasma Sci., 32, 3, 1066–1072.
  • Brewer G., Birdsall, C., (1957). Traveling-Wave Tube Propagation Constants, IRE Transactions on Electron Devices, 4, 2, 140-144.
  • D'Agostino, S., Emma, F., Paoloni, C. (1998). Accurate analysis of helix slow-wave structures. IEEE Transactions on Electron Devices, 45, 7, 1605-1613.
  • Ertay, A. O., Şimşek, S., (2017). On the Assessment Study of Small Signal Gain Analysis of Helix Type Traveling Wave Tube with Pierce Parameters, In IV International IEEE Electromagnetic Compatibility Conference (EMC Turkiye), 1-7.
  • Ertay A. O., Şimşek S. (2018). Yürüyen dalgalı tüp kuvvetlendiricileri için helis yavaş dalgalı yapıların tasarımı, Elektrik-Elektronik ve Biyomedikal Mühendisliği Konferansı ELECO 2018 , 423-427.
  • Ghosh, S., Jain, P. K., Basu, B. N., (1997). Rigorous tape analysis of inhomogeneously-loaded helical slow-wave structures. IEEE Transactions on Electron Devices, 44, 7, 1158-1168.
  • Gilmour, A. S., (1994). Principles of Traveling Wave Tubes, Norwood, MA, USA: Artech House.
  • Gilmour, A. S., (2011). Klystrons traveling wave tubes, magnetrons crossed-field amplifiers and gyrotrons, 1st ed. Norwood, Mass., Artech House.
  • Jain, P. K., Basu, B. N., (1992). The inhomogeneous dielectric loading effects of practical helix supports on the interaction impedance of the slow-wave structure of a TWT. IEEE Transactions on Electron Devices, 39, 3, 727-733.
  • Jain, P. K., Basu, B. N., (1987). The inhomogeneous loading effects of practical dielectric supports for the helical slow-wave structure of a TWT. IEEE Transactions on Electron Devices, 34, 12, 2643-2648.
  • Kesari, V., Basu B. N., (2018). High Power Microwave Tubes Basics and Trends, San Rafael, CA, Morgan & Claypool Publishers.
  • Pierce, J. R., (1947). Theory of the Beam-Type Traveling-Wave Tube, Proceedings of the IRE. 35, 2, 111-123.
  • Pierce, J. R., (1950). Traveling-Wave Tubes, 1st ed. Princeton, N. J. Van Nostrand.
  • Qiu, J. X., Levush, B., Pasour, J., Katz, A., Armstrong, C. M., Whaley, D. R., Gallagher, D. (2009). Vacuum tube amplifiers. IEEE Microwave Magazine, 10(7), 38-51.
  • Qiu, H. J., Hu, Y. L., Hu, Q., Zhu, X. F., Li, B. (2018). Analytic Exploration of the Accuracy of Pierce’s Three-Wave Beam-Wave Interaction Theory of Traveling-Wave Tubes. IEEE Transactions on Plasma Science, 46, 7, 2505-2511.
  • Wong, P. Y., Chernin, D., Lau, Y. Y. (2018). Modification of Pierce’s classical theory of traveling-wave tubes, IEEE Electron Device Letters, 39, 8, 1238-1241.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi