BURSA-ACEMLER BÖLGESİ DES VE DP VERİLERİ İLE ISIL UÇLAŞMA MODELLEMESİ

Doğada, basınç, sıcaklık ve derişim farklılığı nedeniyle uçlaşma akımları meydana gelir. Doğal potansiyel (DP) yöntemi, yorumlama çalışmalarında geleneksel olarak kullanılagelen popüler jeofizik araç olup, bu yöntem uçlaşma akımlarının yarattığı doğal potansiyel farklarının ölçülmesine dayanır. Bu çalışmada, ısıl uçlaşma problemi kümelenmiş elemanlar ağı modeli ile çözülerek bir jeotermal alana uygulanmıştır. Bu yöntemin diğer geleneksel jeofizik yöntemlere kıyasla temel üstünlüğü, incelenen sistemin karmaşık doğası hakkında daha detaylı bilgi verebilmesidir. Bursa ili Çekirge Mahallesi’nin kuzeybatısında yer alan Acemler Mevkiinden toplanan düşey elektrik sondaj (DES) ve DP verileri öncelikle geleneksel yöntemlerle(ters çözüm) değerlendirilmiş, elde edilen parametreler kullanılarak alanın ısıl uçlaşma modeli kurulmuştur.  Böylece jeotermal alan için en uygun termal ve jeofizik parametre değerleri, kaynak yerleri ve sayıları ile jeolojik birimlerin geometrik yapıları saptanmıştır. Bu çalışma ile elde edilen sonuçlar, ısıl uçlaşma yönteminin DP verilerinin yorumlanmasında güçlü bir araç oluşturduğunu ve jeotermal sistemlerin çeşitli özelliklerinin belirlenmesinde etkin şekilde kullanılabileceğini göstermiştir.

THERMAL COUPLING MODELLING WITH THE VES AND SP DATA OF BURSA-ACEMLER REGION

In nature, due to differences in pressure, temperature and concentration, coupling flows occur. The self potential (SP) method is the popular geophysical instrument traditionally used in interpretation studies, which is based on the measurement of the natural potential differences created by the coupling flows. In this study, the thermal coupling problem was solved by a lumped elements network model and applied to a geothermal field. The basic advantage of this method over the other traditional geophysical methods that it can provide more detailed information about the complex nature of the system under consideration. The vertical electric sounding (VES) and SP data collected from the Acemler Location in west of the Çekirge District of Bursa province were firstly evaluated by traditional methods (inverse solution), and the thermal coupling model was established by using the obtained parameters. Thus, the most appropriate thermal and geophysical parameter values ​​for geothermal fields, the location of the sources and their numbers and the geometrical structures of the geological formations were determined. The results obtained from this study showed that the thermal coupling method is a powerful tool in the interpretation of SP data and it can be used effectively to determine the various properties of geothermal systems.

___

  • Başokur, A. T., 2004. Düşey Elektrik Sondajı Verilerinin Yorumu. Ankara: A. Ü. , Müh. Fak. Jeofizik Müh. Bölümü.
  • Bobachev, A.A., Modin, I.N., Shevnin, V.A., 2002. IPI2WIN v2.1, Moscow State University, Geological Faculty, Department of Geophysics (yayınlanmamıştır).
  • Bodvarsson, G.S., 1982. Mathematical Modeling of the Behavior of Geothermal Systems under Exploitation, DoktoraTezi. California Berkeley Üniversitesi, USA.
  • Corwin, R.F., 1990. The Self-Potential Method for Environmental and Engineering Applications. S.H. Ward (Edt.), Geotechnical and Environmental Geophysics içinde, (s. 127–145), Tulsa: Society of Exploration Geophysicists.
  • Corwin, R.F., Hoover, D.B.,1979. The Self-potential Method in geothermal exploration. Geophysics, 44, 226-245.
  • de Witte, L., 1948. A New Method of Interpretation of Self-Potential Data. Geophysics, 13, 600-608.
  • Drahor M.G., Berge M.A., 2006. Geophysical Investigations of the Seferihisar Geothermal Area, Western Anatolia, Turkey. Geothermics, 35, 302-320.
  • Erişen B., Öngür T., 1976. Bursa City Thermal Water Study. Report No: 5659. Mineral Research and Exploration Institute (MTA), Ankara, Turkey.
  • Erişen, B., Akkuş, İ., Uygur, N., Koçak, A., 1996. Türkiye Jeotermal Envanteri. Ankara: Maden Tetkik ve Arama Genel Müdürlüğü.
  • Giampaolo V., Calabrese, D., Rizzo, E., 2016. Transport Processes in Porous Media by Self-Potential Method. Applied and Environmental Soil Science, 2016, 1-12. Gök, E., Polat, O., 2012. An Assessment of the Seismicity of the Bursa Region from a Temporary Seismic Network. PAGEOPH, 169, 659-675.
  • Haklıdır, F.S.T., 2013. Hydro-geochemical Evaluation of Thermal, Mineral and Cold Waters between Bursa City and Mount Uludağ in the South Marmara Region of Turkey. Geothermics, 48, 132-145.
  • Ishido, T., Mizutani, H., Baba, K., 1983. Streaming Potential Observations, Using Geothermal Wells and In Situ Electrokinetic Coupling Coefficients under High Temperature. Tectonophysics, 91, 89-104.
  • Madden, T.R., 1971. The Resolving Power of Geoelectric Measurements for Delineating Resistive Zones with the Crust. T.G. Haecock (Edt.), The Structure and Physical Properties of the Earth’s Crust. AGU Monograph Series-14 içinde (s.95). Washington DC: American Geophysical Union.
  • Marshall, D.J., Madden, T.R., 1959. Induced Polarization, a Study of Its Causes. Geophysics, 24, 790.
  • Meiser, P., 1962. A Method for Quantitative Interpretation of Self-Potential Measurements. Geophys. Prospect., 10, 203-218.
  • Nourbehecht, B., 1963. Irreversible Thermodynamics Effects in Inhomogenous Media and their Application in Certain Geoelectric Problems. Doktora Tezi. M.I.T., USA.
  • Oliveti, I., Cardarelli E., 2017. 2D Approach for Modelling Self-Potential Anomalies: Application to Synthetic and Real Data. Bollettino di Geofisica Teorica ed Applicata, 58, 415-430.
  • Onsager, L., 1931. Reciprocal Relations in Irreversible Processes I. Physical Review, 37, 405-426.
  • Özgüler, M.E., Ünay, T., 1978. Bursa Ovası Jeotermal Enerji Aramaları Rezistivite Etüd Raporu, MTA Rapor No:6255, Ankara, Türkiye.
  • Paul, K., 1965. Direct interpretation of self potential anomalies caused by inclined sheet of infinite horizontal extension. Geophysics, 30, 418–423.
  • Ram Babu, H.V., Atchuta Rao, D., 1988. A Rapid Graphical Method for the Interpretation of the Self-Potential Anomaly over a Two-Dimensional Inclined Sheet of Finite Depth Extent. Geophysics, 53, 1126-1128.
  • Sheffer R. M., 2007. Forward Modelling and Inversion of Streaming Potential for the Interpretation of Hydraulic Conditions from Self-Potential Data. Doctorate thesis, The University of British Columbia, Canada.
  • Sındırgı P., 2005. Sıcak Alanlarda Jeofizik Modellemeler ve Uygulamaları, Doktora Tezi, Dokuz Eylül Üniversitesi, Türkiye.
  • Sill, W.R., Johng, D.S., 1979. Self Potential Survey, Roosevelt Hot Spring, UTAH. DOE/DGE topical report. University of Utah.
  • Sill, W.R., 1983. Self-Potential Modeling from Primary Flows. Geophysics, 48, 76-86.
  • Schima, S., Wilt, M., Ross, H.U.S., 1996. Modeling Self-potential Data in the Abraham and Meadow-Hatton Geothermal Systems. Department of Energy, research summaries.
  • Wilt, M., Butler, D., 1990. Numerical Modeling of SP anomalies: Documentation of Program SPPC and Application in Geothechnical Applications of the Self-potential Method. Techncal Report No:4. Department of the Army Waterworks Experiments Station, Corps of Engineers, Mississipi, USA.
  • Yasukawa, K., 1993. A Coupled Self Potential (SP), Fluid and Heat Flow Model for Subsurface Fluid Flow Systems. Yüksek Lisans Tezi. California Üniversitesi, USA.
  • Yasukawa, K., Mogi, T., Widarto, D., Ehara, S., 2003. Numerical Modeling of a Hydrothermal System Around Waita Volcano, Kyushu, Japan, Based on Resistivity and Self–Potential Survey Results, Geothermics, 32(1), 21-46.
  • Yasukawa, K., Ishido, T., Suzuki, I., 2005. Geothermal Reservoir Monitoring by Continuous Self-Potential Measurements, Mori Geothermal Field, Japan. Geothermics, 34(5), 551-567.
  • Yungul, S.H. 1950. Interpretation of Spontaneous Polarization Anomalies Caused by Spheroidal Orebodies. Geophysics, 15, 237-246.