İÇİ BETON DOLU DAİRESEL KESİTLİ ÇELİK BORULARIN EKSENEL YÜK KAPASİTELERİNİN YAPAY SİNİR AĞLARI VE RASSAL ORMAN YÖNTEMLERİ İLE TAHMİNİ

Bu çalışmada, makine öğrenme teknikleri kullanılarak içi beton dolu dairesel kesitli çelik boruların (BDÇK) basınç altındaki nihai eksenel yük kapasiteleri tahmin edilmiştir. BDÇK kolonlar hem eksenel yükler, hem de yatay yükler altındaki performanslarından dolayı yapılarda çok tercih edilmektedirler. Bunun başlıca nedeni betonun ve çeliğin süneklilik ve rijitlik özelliklerinden kaynaklanmaktadır. Özellikle deprem etkisi altındaki yapısal elemanların davranışı yapının toptan davranışını etkilemektedir. Yapısal elemanların yük taşıma kapasitesinin makine öğrenme yöntemleri kullanılarak değerlendirilmesi araştırmacılar arasında oldukça popüler hale gelmiştir. Bu çalışma ile eksenel yük etkisi altındaki BDÇK kolonların eksenel yük kapasitesi yapay sinir ağları (YSA) ve rassal orman (RO) makine öğrenme yöntemleri kullanılarak tahmin edilmeye çalışılmış ve literatürdeki deney sonuçları ile karşılaştırılmıştır. Kapasite tahmini için literatürdeki 215 deney sonucu kullanılarak makine öğrenme yöntemleri arasında kıyaslama yapılmış, karşılaştırma sonucunda RO yönteminin daha iyi sonuç verdiği görülmüştür.

PREDICTION OF AXIAL LOAD CAPACITY OF CONCRETE-FILLED STEEL TUBES WITH CIRCULAR SECTIONS UNDER AXIAL LOAD BY USING ARTIFICIAL NEURAL NETWORKS AND RANDOM FOREST METHODS

This paper focuses on the prediction of the ultimate compressive capacity of axially loaded concrete-filled steel (CFST) tube section columns using machine learning (ML) techniques. The use of CFST columns in the construction industry has been popular due to their superior structural performance both under axial loads as well as under lateral seismic loads. Studies carried out on the contribution of CFST members on lateral seismic resistance have revealed that the ideal combination of stiffness and ductility inherent in concrete and steel, respectively, results in superior performance under lateral loads. The evaluation of the load-carrying capacity of structural members ML-based predictive techniques has been popular among researchers. In this study, the case of CFST columns under axial loading is studied. The dataset needed for the prediction was acquired from the related existing research which provided the results of 215 experimental studies. The ML techniques that were used included two prevalent techniques namely Artificial Neural Networks (ANN) and Random Forest (RF). In this study, the axial compressive capacity was predicted using these techniques and finally, the performances of the techniques were compared. Overall, the RF prediction technique was found to be in very close agreement with the experimental results acquired from the literature.

___

  • Abdelkarim, O.I., Gheni, A., Anumolu, S., Wang, S. and ElGawady, M., 2015. Hollow-Core FRP-Concrete-Steel Bridge Columns Under Extreme Loading. Report No. cmr15-008; Missouri Department of Transportation Research, Development and Technology, Missouri University of Science and Technology, MO, USA.
  • Aggarwal, C.C., 2018. Neural Networks and Deep Learning A Textbook. Springer ISBN 978-3-319-94462-3.
  • Aslani, F., Uy, B. and Tao, Z. and Mashiri, F., 2015. Behavior And Design Composite Columns İncorporating Compact High Strength Steel Plates. Journal of Construction Steel Research., 107, 94-110.
  • Breiman, L., 2001. Random Forests Book. Machine Learning, 45(1): 5–32.
  • Chang, X., Luo, X., Zhu, C., Tang, C., 2014. Analysis Of Circular Concrete-Filled Steel Tube (CFT) Support İn High Ground Stress Conditions. Tunnel Underground Space Technol. 43, 41-48.
  • Cheng, M.Y. and Cao, M.T., 2016. Estimating Strength Of Rubberized Concrete Using Evolutionary Multivariate Adaptive Regression Splines. Journal of Civil Engineering Management, 22(5), 711-720.
  • Clark, W.S., 1994. Axial Load Capacity Of Circular Steel Tube Columns Filled With High Strength Concrete. Master thesis, Victoria University of Technology, Australia.
  • Cosgun C., Comert M., Demir C., Ilki A., 2012. FRP Retrofit a Full Scale 3D RC Frame. 6th International Conference on FRP Composites in Civil Engineering 13-15 June 2012, Roma, Italy.
  • Cosgun, C., Comert, M., Demir, C. and Ilki, A., 2019. Seismic Retrofit of Joints of a Full-Scale 3D Reinforced Concrete Frame with FRP Composites. Journal of Composites for Construction April 2019 Volume 23, Issue 2, https://doi.org/10.1061/(ASCE)CC.1943-5614.0000923.
  • Cosgun, C., Turk, A.M., Mangir, A. Cosgun, T. and Kiymaz, G., 2020a. Experimental Behaviour And Failure Of Beam-Column Joints With Plain Bars, Low-Strength Concrete And Different Anchorage Details. Engineering Failure Analysis, Volume 109, 2020, 104247, https://doi.org/10.1016/j.engfailanal.2019.104247.
  • Cosgun, C., Cosgun, O., Sadeghian, R. and Aram, S., 2020b. Prediction of Ultimate Load Capacity of Concrete-Filled Steel Tubes with Circular Sections under Axial Load by Using Predictive Analytics Methods. 2020 International Conference on Computational Science and Computational Intelligence (CSCI).
  • de Oliveira, W.L.A., de Nardin, S., de Cresce El Debs, A.L.H. and El Debs, M.K., 2009. Influence Of Concrete Strength And Length/Diameter On The Axial Capacity Of CFT Columns. Journal of Construction Steel Research., 65(12), 2103-2110.
  • Dutta, S., Murthy, A.R., Kim, D. and Samui, P., 2017. Prediction Of Compressive Strength Of Self-Compacting Concrete Using İntelligent Computational Modelling. CMC: Computers, Materials & Continua, 53(2), 157-174.
  • Ekmekyapar, T and AL-Eliwi, B. J. M., 2016. Experimental Behaviour Of Circular Concrete Filled Steel Tube Columns And Design Specifications. Thin-Walled Structures, vol. 105, pp. 220–230.
  • Erdem, H., 2017. Predicting The Moment Capacity Of RC Slabs With İnsulation Materials Exposed To Fire By ANN. Structural Engineering and Mechanics, Volume 64 issue 3, Pages 339-346.
  • Gardener, N.J. and Jacobson, R., 1967. Structural Behavior Of Concrete Filled Steel Tubes. J. Am. Concrete Inst. (ACI), 64(7), 404-413.
  • Gardener, N.J., 1968. Use Of Spiral Welded Steel Tubes İn Pipe Columns. J. Am. Concrete Inst. (ACI), 65(11), 937-942.
  • Giakoumelis, G. and Lam, D., 2004. Axial capacity of circular concrete-filled tube columns. J. Constr. Steel Res., 60(7), 1049- 1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
  • Gupta, P.K., Sarda, S.M. and Kumar, M.S., 2007. Experimental And Computational Study Of Concrete Filled Steel Tubular Columns Under Axial Loads. J. Constr. Steel Res., 63(2), 182-193. https://doi.org/10.1016/j.jcsr.2006.04.004.
  • Han, L.H., Yao, G.H. and Zhao, X.L., 2005. Tests And Calculations For Hollow Structural Steel (HSS) Stub Columns Filled With Self-Consolidating Concrete (SCC). J. Constr. Steel Res., 61(9), 1241-1269.
  • Han, L.H. and Yao, G.H., 2004. Experimental Behaviour Of Thin-walled Hollow Structural Steel (HSS) Columns Filled With Selfconsolidating Concrete (SCC). Thin-Wall. Struct., 42(9), 1357- 1377. https://doi.org/10.1016/j.tws.2004.03.016.
  • Han, L.H., Li, W. and Bjorhovde, R., 2014. Developments And Advanced Applications Of Concrete-Filled Steel Tubular (CFST) Structures Members. J. Constr. Steel Res. 100, 211-228.
  • Han, L.H., 2000. Tests on Concrete Filled Steel Tubular Columns With High Slenderness Ratio. Advances in Structural Engineering, vol. 3, no. 4, pp. 337–344.
  • Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K.C., Weng, Y.T., Wang, S.H. and Wu, M.H., 2002. Axial Load Behavior Of Stiffened Concrete-Filled Steel Columns. Journal of Structural Engineering, ASCE, 128(9), 1222-1230.
  • Ishwaran, H., 2014. The Effect of Splitting on Random Forests. Machine learning, 99(1), 75–118. https://doi.org/10.1007/s10994-014-5451-2.
  • Johansson, M. and Gylltoft, K., 2002. Mechanical Behavior Of Circular Steel–Concrete Composite Stub Columns. J. Struct. Eng., ASCE, 128(8), 1073-1081. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1073).
  • Karatas, C., 2019. Prediction Of Ultimate Load Capacity Of Concrete-Filled Steel Tube Columns Using Multivariate Adaptive Regression Splines (MARS). Steel and Composite Structures, Vol 33, No. 4 (2019) 583-594.
  • Kitada, T., 1998. Ultimate Strength And Ductility Of State-Of-Theart Concrete-Filled Steel Bridge Piers İn Japan. Eng. Struct., 20(4- 6), 347-354. https://doi.org/10.1016/S0141-0296(97)00026-6.
  • Lai, M.H., Ho, J.C.M., 2014. Confinement Effect Of Ring-Confined Concrete-Filled-Steel Tube Columns Under Uni-Axial Load. Eng. Structures. 67, 123–141.
  • Lee, S.H., Uy, B., Kim, S.H., Choi, Y.H. and Choi, S.M., 2011. Behavior Of High strength Circular Concrete-Filled Steel Tubular (CFST) Column Under Eccentric Loading. J. Constr. Steel Res., 67, 1-13. https://doi.org/10.1016/j.jcsr.2010.07.003.
  • Li, J. and Yang, E.H., 2018. Probabilistic-Based Assessment For Tensile Strain-Hardening Potential Of Fiber-Reinforced Cementitious Composites. Cement and Concrete Composites, 91, 108-117.
  • Liu, D.L., Gho, W.M. and Yuan, J., 2003. Ultimate Capacity Of High-Strength Rectangular Concrete-Filled Steel Hollow Section Stub Columns. J Constr Steel Res., 59 (12), 1499-1515. https://doi.org/10.1016/S0143-974X(03)00106-8.
  • Liu, D.L. and Gho, W.M., 2005. Axial Load Behaviour Of High strength Rectangular Concrete Filled Steel Tubular Stub Columns. Thin Wall Struct., 43(8), 1131-1142. https://doi.org/10.1016/j.tws.2005.03.007.
  • Lue, D.M., Liu, J.L. and Yen, T., 2007. Experimental Study On Rectangular CFST Columns With High-Strength Concrete. J. Constr. Steel Res., 63(1), 37-44. https://doi.org10.1016/j.jcsr.2006.03.007.
  • Oshiro, T.M., Peres, P.S., and Baranauskas, J.A., 2012. How Many Trees in a Random Forest?. 8th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2012, 7376, 54–168.
  • O’Shea, M.D. and Bridge, R.Q., 1994. Tests On Thin-Walled Concrete-Filled Steel Tubes. Proceedings of the 12th International Specialty Conference on Cold-Formed Steel Structures, St. Louis, MO, USA, October, pp. 399-419.
  • O’Shea, M.D. and Bridge, R.Q., 1998. Tests On Circular Thin-Walled Steel Tubes Filled With Medium And High Strength Concrete. Austral. Civil Eng. Transact., 40, 15-27.
  • O’Shea, M.D. and Bridge, R.Q., 2000. Design Of Circular Thin-walled Concrete-Filled Steel Tubes. J. Struct. Eng., ASCE, 126(11), 1295-1303.
  • Ren, Q., Li, M., Zhang, M., Shen, Y. and Si, W., 2019. Prediction Of Ultimate Axial Capacity Of Square Concrete-Filled Steel Tubular Short Columns Using A Hybrid İntelligent Algorithm. Appl. Sci., 9(14), 2802.
  • Rodriguez, J. D., Perez, A., & Lozano, J. A., 2009. Sensitivity Analysis Of K-Fold Cross-Validation İn Prediction Error Estimation. IEEE transactions on pattern analysis and machine intelligence, 32(3), 569-575.
  • Sakino, K. and Hayashi, H., 1991. Behavior Of Concrete Filled Steel Tubular Stub Columns Under Concentric Loading. Proceedings of the 3rd International Conference on Steel Concrete Composite Structures, Fukuoka, Japan, September, pp.25-30.
  • Sakino, K., Nakahara, H., Morino, S. amd Nishiyama, I., 2004. Behavior Of Centrally Loaded Concrete-Filled Steel-Tube Short Columns. J. of Structural Engineering, 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
  • Sakino, K. and Sun, Y., 2000. Steel Jacketing For İmprovement Of Column Strength And Ductility. Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand.
  • Schneider, S.P., 1998. Axially Loaded Concrete-Filled Steel Tubes. Journal of Structural Engineering, ASCE, 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125).
  • Tan, K.F., Pu, X.C. and Cai, S.H., 1999. Study On Mechanical Properties Of Extra Strength Concrete Encased İn Steel Tubes. J. Build. Struct., 20(1), 10-15.
  • Tomii, M., Yoshimura, K. and Morishita, Y., 1977. Experimental Studies On Concrete Filled Steel Tubular Stub Columns Under Concentric Loading. Proceedings of the International Colloquium on Stability of Structures, Washington DC, USA, May, pp. 718-741.
  • Tran, V.L., Thai, D.K., and Nguyen, D.D., 2020. Practical Artificial Neural Network Tool For Predicting The Axial Compression Capacity Of Circular Concrete-Filled Steel Tube Columns With Ultra-High-Strength Concrete. Thin-Walled Structures 151 (2020) 106720.
  • Uy, B., 2001. Strength Of Short Concrete Filled High Strength Steel Box Columns. Journal of Construction Steel Research, 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6.
  • Xiong, M.X., Xiong, D.X. and Liew, J.Y.R., 2017. Axial Performance Of Short Concrete Filled Steel Tubes With High-And Ultra-High- Strength Materials. Engineering Structures, 136, 494-510.
  • Xu, F., Chen, J., Jin, W.L., 2014. Experimental İnvestigation Of Thin-Walled Concrete Filled Steel Tube Columns With Reinforced Lattice Angle. Thin-Walled Structure 84, 59–67.
  • Yu, Z.W., Ding, F.X. and Cai, C.S., 2007. Experimental Behavior Of Circular Concrete filled Steel Tube Stub Columns. Journal of Construction Steel Research, 63, 165-174.
  • Yu, Q., Tao, Z., Wu, Y.X., 2008. Experimental Behaviour Of High Performance Concrete Filled Steel Tubular Columns. Thin-Wall. Struct., 46(4), 362-370. https://doi.org/10.1016/j.tws.2007.10.001.
  • Yamamoto, T., Kawaguchi, J. and Morino, S., 2000. Experimental Study Of Scale Effects On The Compressive Behavior Of Short Concrete-Filled Steel Tube Columns. Proceedings of the United Engineering Foundation Conference on Composite Construction in Steel and Concrete IV (AICE), Banff, Canada, June, pp. 879-891.
  • Yuvaraj, P., Murthy, A.R., Iyer, N.R., Samui, P. and Sekar, S.K., 2013. Multivariate Adaptive Regression Splines Model To Predict Fracture Characteristics Of High Strength And Ultra High Strength Concrete Beams. CMC: Computers, Materials & Continua, 36(1), 73-97.