SCHMIDT ÇEKİCİ GERİ TEPME SAYILARINI ETKİLEYEN FAKTÖRLERİN NİCEL DEĞERLENDİRMESİ

Yüzey sertliğinin pratik ve ucuz bir şekilde ölçülmesini sağlayan Schmidt çekici, kaya malzemelerinin mekanik özelliklerinin tahmini için yaygın olarak kullanılmaktadır. Yüzey pürüzlülüğü, test örneğinin su içeriği, ayrışma, Schmidt çekici tipi, test yöntemleri ve tane boyu etkisi Schmidt çekici geri tepme sayısını etkileyen önemli parametrelerdir. Bu çalışmanın amacı, Schmidt çekici geri tepme sayısını etkileyen faktörleri sayısal olarak incelemektir. Bu amaca yönelik olarak, bu çalışmadan ve önceki çalışmalardan çok sayıda Schmidt çekici geri tepme sayısı değerleri elde edilmiş ve Schmidt değerlerini etkileyen faktörler nicel olarak analiz edilmiştir. Farklı mineral tane boyutlarının Schmidt geri tepme sayısına etkisi de irdelenmiştir. Schmidt çekici geri tepme sayısı değerleri için en yüksek düşüş %54 ile taze ve bozunmuş örnekler arasında tespit edilmiştir. Kuru ve doygun örneklerde ölçülen geri tepme sayısı değerleri arasındaki fark % 34’e ulaşmıştır. Geri tepme sayısı değerleri arasındaki farklar, farklı değerlendirme yöntemleri ve çeşitli test yüzeyleri için sırasıyla % 19 ve %33 olarak gözlenmiştir. N ve L tipi Schmidt çekicinden elde edilen geri tepme sayısı değerleri arasındaki fark ise %24 olarak hesaplanmıştır. Schmidt çekici testinin yapılması ve sonuçların yorumlanması için bir deneyim gerekmesine karşın, Schmidt çekicinin jeoteknik projelerin ön değerlendirmesinde hızlı, ucuz ve basit çözümler sağlayacağı açıktır.

QUANTITATIVE EVALUATION of the FACTORS AFFECTING the SCHMİDT REBOUND NUMBER

The Schmidt hammer provides a quick and inexpensive measure of surface hardness that is commonly used for predicting the mechanical properties of rock material. Surface roughness, water content of the test sample, weathering, Schmidt hammer type, the testing methods and influence of grain size are important parameters affecting the Schmidt hammer rebound number. The aim of this study is to quantitative examine the factors affecting Schmidt hammer rebound number. Within the framework of the purposes, a large number of Schmidt rebound values was derived from the current study and the previous studies and affecting factors of Schmidt hammer rebound number values were analyzed numerically. The effect of different mineral grain sizes on the Schmidt hammer rebound number was also investigated. The highest level of decrease in Schmidt rebound values was determined between fresh and weathered samples with a level of 54 %. The difference between the Schmidt hammer rebound values measured in dry and saturated samples reached 34%. The difference rebound values were observed as 19 % and 33 % for different evaluation methods and different test surfaces, respectively. Rebound values derived from N and L type Schmidt hammer was calculated as 24 %. Although experience is required to perform the Schmidt hammer test and interpret the results, it is clear that the Schmidt hammer will provide quick, inexpensive and simple solutions for the preliminary evaluation of geotechnical projects.

___

  • ASTM., 2001. Standard test method for determination of rock hardness by rebound hammer method. 04.09 (D 5873-00).
  • Atapour, H., Mortazavi, A., 2018. The effect of grain size and cement content on index properties of weakly solidified artificial sandstones. J. Geophys. Eng. 15, 613–619.
  • Aydın, A., 2009. ISRM Suggested method for determination of the Schmidt hammer rebound hardness: revised version. Int. J. Rock Mech. Min. Sci., 46,627–634.
  • Aydın, A., Basu, A., 2005. The Schmidt hammer in rock material characterization. Eng. Geol., 81,1–14.
  • Aydin, A., 2014. ISRM suggested method for determination of the Schmidt hammer rebound hardness: revised version. In R. Ulusay (ed), The ISRM suggested methods for rock characterization, testing and monitoring: 2006–2014. Heidelberg, Springer.
  • Büyüksağış, I.S., Göktan, R.M., 2007. The effect of Schmidt hammer type on uniaxial compressive strength prediction of rock, Int. J. Rock Mech. Min. Sci., 44:299–307.
  • Gökçeoğlu, C., 1997. Killi, Yoğun Süreksizlik İçeren ve Zayıf Kaya Kütlelerinin Mühendislik Sınıflamalarında Karşılaşılan Güçlüklerin Giderilmesine Yönelik Yaklaşımlar. Doktora Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Hucka, V., 1965. A rapid method for determining the strength of rocks in situ. Int J Rock Mech. Min. Sci Geomech, Abstr, 127-134.
  • ISRM., 1978. Suggested methods for determining hardness and abrasiveness of rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15, 89–98.
  • ISRM., 1981. ISRM Suggested Methods Rock Characterization, Testing and Monitoring. E. T.
  • Brown (ed.), Pergamon Press, London, 211 s.
  • Kahraman, S., Fener, M., Günaydın, O., 2002. Predicting the Schmidt hammer values of in-situ intact rock from core sample values. Int. J. Rock Mech. Mi.n Sci. 39,395–399.
  • Kahraman, S., Fener, M., 2019. Karbonatlı kayaçların Schmidt çekici değerleri üzerinde su içeriğinin etkisi. 4. International Conference on Civil and Environmental Geology and Mining Engineering, 20-22 April 2019, Trabzon, pp. 151-157.
  • Karakul, H., 2017. Investigation of saturation effect on the relationship between compressive strength and Schmidt hammer rebound. Bull. Eng. Geol. Environ., 76, 1143–1152.
  • Karaman, K., Kesimal, A., 2015. A comparative study of Schmidt hammer test methods for estimating the uniaxial compressive strength of rocks, Bulletın of Engıneerıng Geology and the Envıronment, 74, 507-520.
  • Karaman, K., 2019. Effect of Surface Roughness, Weathering And Testing Methods On Schmidt Hardness Measurements. 4. International Conference on Civil and Environmental Geology and Mining Engineering, 20-22 April 2019, Trabzon, pp. 1262-1274.
  • Karaman, K., 2020. Kaya Yüzey Pürüzlülüğünün Schmi̇d Sertli̇ği̇ Ölçümleri̇ne Etki̇si̇. Bilimsel Madencilik Dergisi. 59, 5–24.
  • Karpuz, C., 1990. A classification System for Excavation of Surface Coal Measures. Mining Sci. Tech. 11,157–163.
  • Kulekçi, G., Yılmaz, A.O., Çullu, M., 2021. Experımental investigation of the usability of construction waste as aggregate. Journal of Mining and Environment 12 (1), 63-76
  • Külekçi, G., Vural, A., Aliyazıcıoğlu, A., 2022. Assessment of excavability classification in a Limestone Quarry: A case study from Bayburt, Turkey. Iranian Journal of Earth Sciences, 14 (4), 241-251.
  • McCarroll, D., 1989. Potential and limitations of the Schmidt hammer for relative-age dating: field tests on Neoglacial Moraines, Jotunheimen, Southern Norway. Arctic and Alpine Research, 21 (3), 268-275.
  • Schmidt, E., 1951. A non-destructive concrete tester. Concrete, 59(8),34–35.
  • Sumner, P., Nel, W., 2002. The effect of rock moisture on Schmidt hammer rebound: tests on rock samples from Marion Island and South Africa. Earth Surf. Process Landf. 27, 1137–1142.
  • USBR., 1998. Engineering geology field manual. Field I˙ndex Tests. 1,111–112.
  • Wilson, P., Matthews, J.A., 2016. Age assessment and implications of late Quaternary periglacial and paraglacial landforms on Muckish Mountain, northwest Ireland, based on Schmidt-hammer exposure-age dating (SHD). Geomorphology, 270, 134–144.
  • Wilson, P., Linge, H., Matthews, J.A., 2019. Comparative numerical surface exposure-age dating (10Be and Schmidt hammer) of an early-Holocene rock avalanche at Alstadfjellet, Valldalen, southern Norway. Geogr. Ann. Ser. A Phys. Geogr. 101, 293–309.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi