HAVA ARAÇLARI İÇİN DEĞİŞKEN AKILI RELÜKTANS GENERATÖR TASARIMI

Elektrifikasyonu artırılmış hava araçları kavramı, hava araçlarında kullanılan mekanik, pnömatik ve hidrolik sistemlerin mümkün olduğunca elektriksel sistemlere dönüştürülmesini hedefler. Böylece yüksek verimli, daha az bakım gerektiren ve daha hafif sistemler kullanarak yakıt tasarrufu sağlamak hedeflenir. Bu sistemlerde generatör önemli bir rol oynamaktadır. Bu çalışmada hava araçları için değişken akılı relüktans generatör (DARG) tasarımı yapılmıştır. Öncelikle hava araçlarında kullanılan değişken hızlı-değişken frekanslı elektrik üretim mimarisi anlatılmıştır. 12/10 topolojiye sahip bir DARG’ın çalışma prensibi analiz edilmiş ve dinamik denklemleri verilmiştir. Rotor pozisyonuna bağlı endüktans değişimleri incelendiğinde DARG’ın yapısal olarak anahtalamalı relüktan generatör (ARG)’ye benzemesine rağmen moment üretim mekanizması bakımından silindirik rotorlu bir senkron generatöre benzediği görülmüştür. Fazör diyagramından yararlanarak tam yük altında ve 0.85 geri güç faktöründe çalışabilmesini sağlayacak toplu parametreler elde edilmiştir. Hesaplanan toplu parametrelere uygun bir tasarım yapılmıştır. Tasarım ve analiz sırasında Ansys/Maxwell’den yararlanılmıştır. Tasarımı yapılan generatörün terminal geriliminin harmonik analizi yapılmış ve bozulma faktörünün %2.16 olduğu görülmüştür. Yapılan analizler neticesinde, 12/10 DARG’ün üç seviyeli senkron generatöre alternatif olabilecek, daha ucuz ve daha basit bir generatör olduğu görülmüştür.

VARIABLE FLUX RELUCTANCE GENERATOR DESIGN FOR AIRCRAFT

The generator plays a significant role in more electric aircraft (MEA). In this paper, variable flux reluctance generator (VFRG) is designed for aircraft. A brief overview of airplane electric power generation using variable speed-variable frequency is given firstly. The electromagnetic properties of 12/10 VFRG is analyzed and its dynamic equations are given. Using dynamic equations, a method has been developed to determine inductance values that will allow it to operate under full load and 0.85 lagging power factor. Lumped parameters are obtained the machine to operate at full-load and 0.85 lagging power factor by using phasor diagram. On the basis of the calculated lumped parameters, a 5kW 12/10 VFRG has been designed. Ansys/Maxwell is used to design and analyze. Using a harmonic analysis, distortion factor of terminal voltage is determined as 2.16 %. As a result of the analysis an alternative to the three-level generator is the 12/10 VFRG, which is less expensive and has simple structure.

___

  • Atkinson, G. J., Mecrow, B. C., Jack, A. G., Atkinson, D. J., Sangha, P., Benarous, M., 2006. The Analysis of Losses in High-Power Fault-Tolerant Machines for Aerospace Applications. IEEE Transactions on Industry Applications, 42(5), 1162-1170.
  • Ferreira, C. A., Jones, S. R., Heglund, W. S., Jones, W. D., 1995. Detailed Design of a 30-kW Switched Reluctance Starter/Generator System for a Gas Turbine Engine Application. IEEE Transactions on Industry Applications, 31(3), 553-561.
  • Griffo, A., Wrobel, R., Mellor, P. H., Yon, J. M., 2013. Design and Characterization of a Three-phase Brushless Exciter for Aircraft Starter/Generator. IEEE Transactions on Industry Applications, 49(5), 2106-2115.
  • Huang, L., Zhu, Z. Q., Feng, J., Guo, S., Shi, J. X., Chu, W., 2018. Analysis of Stator/Rotor Pole Combinations in Variable Flux Reluctance Machines Using Magnetic Gearing Effect. IEEE Transactions on Industry Applications, 55(2), 1495-1504.
  • Liu, X., & Zhu, Z. Q. (2014). Stator/Rotor Pole Combinations and Winding Configurations of Variable Flux Reluctance Machines. IEEE Transactions on Industry Applications, 50(6), 3675-3684.
  • Madonna, V., Giangrande, P., Galea, M., 2018. Electrical Power Generation in Aircraft: Review, Challenges, and Opportunities. IEEE Transactions on Transportation Electrification, 4(3), 646–659.
  • Sarlioglu B., Morris, C. T., 2015. More Electric Aircraft: Review, Challenges, and Opportunities for Commercial Transport Aircraft. IEEE Transactions on Transportation Electrification, 1(1), 54–64.
  • Standard, M. (2004). Aircraft electric power characteristics. Department of Defense Interface Standard (MIL-STD-704F).
  • Valdivia, V., Todd, R., Bryan, F. J., Barrado, A., Lázaro, A., Forsyth, A. J., 2013. Behavioral Modeling of a Switched Reluctance Generator for Aircraft Power Systems. IEEE Transactions on Industrial Electronics, 61(6), 2690-2699.
  • Van der Geest, M., Polinder, H., Ferreira, J. A., Zeilstra, D., 2015. Design and Testing of a High-Speed Aerospace Permanent Magnet Starter/Generator. In 2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS) (pp. 1-6). IEEE.
  • Wang, Y., Nuzzo, S., Zhang, H., Zhao, W., Gerada, C., Galea, M., 2020. Challenges and Opportunities for Wound Field Synchronous Generators in Future More Electric Aircraft. IEEE Transactions on Transportation Electrification, 6(4), 1466-1477.
  • Whyatt, G. A., & Chick, L. A., 2012. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells (No. PNNL-21382). Pacific Northwest National Lab.(PNNL), Richland, WA (United States).
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi