Yenilikçi Uyarlanabilir Bir Zarf Koruma Sisteminin Farklı Rüzgar Türbinleri Üzerindeki Etkinliğinin İncelenmesi

Bu çalışmada, rüzgar elektrik santrallerinde yaygın olarak kullanılan yatay eksenli rüzgar türbinlerini aşırı yüklenmelerden korumak için geliştirilen yenilikçi uyarlanabilir bir zarf koruma sistemi kısaca açıklanmıştır. Türbinlere ve türbin çalışmasındaki değişikliklere uyarlanabilen yenilikçi sistem, rüzgar ve türbine ait durum değişkenlerini gerçek zamanlı olarak izlemektedir. Bu sayede, türbinin tehlikeli çalışması durumunu önceden sezmekte ve sadece gerektiğinde türbini korumak için türbin kanat yunuslama açısı kontrol sistemine müdahele etmektedir. Sistem tasarımı, rüzgar türbinlerini aşırı itki kuvvetinden koruyacak şekilde gerçekleştirilmiş olup bu çalışmada farklı kanat sayıları ve rotor çaplarındaki Türbin A, Türbin B ve Türbin C olarak adlandırılan rüzgar türbinleri üzerindeki etkinliği simülasyonlar ile incelenmiştir. Simülasyon sonuçları, yeni zarf koruma sisteminin değişik rüzgar türbinlerine uyarlanabildiği ve türbin kanatlarının yunuslama açılarını topluca değiştirerek türbinleri önceden belirlenen itki kuvveti sınır değerleri içinde çalıştırarak koruyabileceğini göstermiştir.

Investigation of the Efficacy of a New Envelope Protection System on Different Wind Turbines

This paper briefly defines an adaptive envelope protection system, which is developed to protect the commonly used horizontal axis wind turbines in wind farms from excessive loads. The system, which can adapt to turbines and their operations, follows up wind and turbine variables. Thus, in advance, it detects the cases of excessive loads, and only when required, it interacts with the turbine blade pitch control system for turbine protection. The system is designed such that it protects turbines from high thrust forces. Here, the efficacy of the system is investigated through simulations on different horizontal axis turbines, referred to as Turbine A, Turbine B, and Turbine C with different number of blades and rotor diameters. Simulation results demonstrate that the protection system is highly effective in adaptation to various turbines and through changing the blade pitch angles, collectively, it protects them by operating within pre-defined thrust limits.

___

  • Al-Ahmar, E., Benbouzid, M. E. H., Amirat, Y. & Ben Elghali, S. E. (2008). DFIG-based wind turbine fault diagnosis using a specific discrete wavelet transform. 18th International Conference on Electrical Machines, ICEM’08, Vilamoura, Portekiz.
  • Bernhammer, Lars. O., Van Kuik, Gijs A. M. & De Breuker, R. (2016). Fatigue and extreme load reduction of wind turbine components using smart rotors. Journal of Wind Engineering and Industrial Aerodynmics, 154, 84–95. Doi: https://doi.org/10.1016/j.jweia.2016.04.001
  • Bossanyi, E. A. (2003). Individual blade pitch control for load reduction. Wind Energy, 6(2), 119–128. Doi: https://doi.org/10.1002/we.76
  • Camblong, H., Nourdine, S., Vechiu, İ. & Tapia, G. (2012). Control of wind turbines for fatigue loads reduction and contribution to the grid primary frequency regulation. Energy, 48(1), 284–291. Doi: https://doi.org/10.1016/j.energy.2012.05.035
  • Cetrini, A., Cianetti, F., Corradini, M. L., Ippoliti, G. & Orlando, G. (2019). On-line fatigue alleviation for wind turbines by a robust control approach. International Journal of Electrical and Power & Energy Systems, 109, 384–394. Doi: https://doi.org/10.1016/j.ijepes.2019.02.011
  • Fischer B. & Shan, M. (2013). A survey on control methods for the mitigation of tower loads. Fraunhofer-Institute for Wind Energy and Energy Systems Technology, IWES, Proje Raporu 01/104256. Erişim adresi: https://publica-rest.fraunhofer.de/server/api/core/bitstreams/f0c70706-6842-454d-a14f-4fa050f7787a/content
  • Gupta, A., Rotea, M. A., Chetan, M., Sakib, M. S. & Griffith, D. T. (2021). A methodology for robust load reduction in wind turbine blades using flow control devices. Energies, Cilt: 14 (12), 1-29. Doi: https://doi.org/10.3390/en14123500
  • Jelavic, M., Petrovic, V., Barisic, M. & Ivanovic, I. (2013). Wind turbine control beyond the cut-out wind speed. European Wind Energy Conference and Exhibition, Bec/Viyana, Avusturya. Johnson, K. E., Pao, L. Y., Balas, M. J. & Fingersh, L. J. (2006). Control of variable speed wind turbines-standard and adaptive techniques for maximizing energy capture. IEEE Control Systems Magazine, 26(3), 70–81. Doi: 10.1109/MCS.2006.1636311
  • Jonkman, J., Butterfield, S., Musial, W. & Scott, G. (2009). Definition of a 5-MW reference wind turbine for offshore system development. NREL/TP-500-38060, National Renewable Energy Laboratory. Erişim adresi: https://www.nrel.gov/docs/fy09osti/38060.pdf
  • Merabet, A., Thongam, J. & Gu, J. (2011). Torque and pitch angle control for variable speed wind turbines in all operating regimes.10th International Conference on Environment and Electrical Engineering (EEEIC), Roma, İtalya.
  • Oltmann, N. C., Sobotta, D. & Hoffmann, A. (2017). Load reduction of wind turbines using trailing edge flaps. Energy Procedia, 136, 176–181. Doi: https://doi.org/10.1016/j.egypro.2017.10.316
  • Petrovic,V., Baotic, M. & Peric, N. (2012). Reduction of wind turbine tower oscillation based on individual pitch control. 20th Mediterranean Conference on Control & Automation (MED), Barsenola, İspanya.
  • Petrovic, V. & Bottasso, C. L. (2014). Wind turbine optimal control during storms. Journal of Physic: Conference Series, 524(1). Doi: 10.1088/1742-6596/524/1/012052
  • Petrovic, V. & Bottasso, C. L. (2015). Wind Turbine Envelope Riding. AIAA Scitech, 33rd Wind Enery Symposium, Kissimmee, Florida.
  • Petrovic, V. & Bottasso, C. L. (2017). Wind turbine envelope protection control over the full wind speed range, Renewable Energy, 111, 836–848. Doi: https://doi.org/10.1016/j.renene.2017.04.021
  • Stol K. A. & Fingersh, L. J. (2004). Wind turbine field testing of state-space control designs. NREL/SR-500-35061, National Renewable Energy Laboratory. Erişim adresi: https://www.nrel.gov/docs/fy04osti/35061.pdf
  • Stubkier, S., Pedersen, H. C. & Jonkman, J. M. (2014). Analysis of load reduction possibilities using a hydraulic soft yaw system for a 5-MW turbine and its sensitivity to yaw-bearing friction. Engineering Structures, 69, 123–134. Doi: https://doi.org/10.1016/j.engstruct.2014.01.022
  • Şahin, M. & Yavrucuk, İ. (2017a). Dynamical modelling of a wind turbine sytem with precone and tilt angles. 9th Ankara International Aerospace Conference, AIAC 2017, Ankara, Türkiye.
  • Şahin, M., Yavrucuk, İ. (2017b). Değişken hızlı rüzgar türbinlerinin kısmi ve tam yük bölgeleri için kontrolcü tasarımı. 9. Yenilenebilir Enerji Kaynakları Sempozyumu, YEKSEM 2017, Antalya, Türkiye.
  • Şahin, M. (2018). Dynamic modeling, control and adaptive envelope protection system for horizontal axis wind turbines (Doktora Tezi). Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstititüsü, Ankara, Türkiye. Erişim adresi: http://etd.lib.metu.edu.tr/upload/12622891/index.pdf
  • Şahin, M. & Yavrucuk, İ. (2019a). Performance comparison of two turbine blade pitch controller design methods based on equilibrium and frozen wake assumptions. 10th Ankara International Aerospace Conference, AIAC 2019, Ankara, Türkiye.
  • Şahin, M., Yavrucuk, İ. (2019b). Rüzgar türbini kanat yunuslama açısı kontrolcüsü tasarımı ve performans analizi. 5. İzmir Rüzgar Sempozyumu, İzmir, Türkiye.
  • Şahin, M. & Yavrucuk, İ. (2020). Adaptive envelope protection control for the below and above rated regions of wind turbines. World Academy of Science, Engineering and Technology International Journal of Energy Power Engineering, 14(10), 275–283.
  • Şahin, M. & Yavrucuk, İ. (2021a). An algorithm for wind turbine protection under iced rotor blades. 11th Ankara International Aerospace Conference, AIAC 2021, Ankara, Türkiye.
  • Sahin, M. (2021b). MS (Mustafa Sahin) Bladed Rüzgar Türbin Simülasyon Modeli ve bazı önemli yetenekleri. EMO Bilimsel Dergi, 11(1), 7-19.
  • Şahin, M., Yavrucuk, İ. (2021c). Rüzgar türbinleri için yenilikçi uyarlanabilir bir zarf koruma sisteminin geliştirilmesi ve farklı rotor çaplarındaki türbinler üzerinde simülasyon testleri. 6. İzmir Rüzgar Sempozyumu, İzmir, Türkiye.
  • Şahin, M. & Yavrucuk, İ. (2022). Adaptive envelope protection control of wind turbines under varying operational conditions. Energy, 247(123544). Doi: https://doi.org/10.1016/j.energy.2022.123544
  • Unnikrishnan, S., Jeram, G. J. & Prasad, J. V. R. (2004). Tactile limit avoidance cueing using adaptive dynamic trim. Proceedings of the American Helicopter Society 60th Annual Forum, Baltimore, Maryland.
  • Xu, B.., Yuan, Y., Liu, H., Jiang, P., Gao, Z., Shen, X. & Cai, X. (2020). A Pitch Angle Controller based on Novel Fuzzy-PI Control for wind turbine load reduction. Energies, Cilt: 13(22), 6086, 1-16. Doi: https://doi.org/10.3390/en13226086
  • Yavrucuk, I., Prasad, J. V. R. & Unnikrishnan, S. (2009). Envelope protection for autonomous unmanned aerial vehicles. Journal of Guidance, Control, and Dynmics, 32(1), 248–261. Doi: https://doi.org/10.2514/1.35265
  • Yavrucuk, I. & Prasad, J. V. R. (2012). Online dynamic trim and control limit estimation. Journal of Guidance, Control, and Dynamics, 35(5), 1647–1656. Doi: https://doi.org/10.2514/1.53116
  • Zhang, M., Yang, H., & Xu, J. (2017). Numerical investigation of azimuth dependent smart rotor control on a large-scale offshore wind turbine. Renewable Energy, 105, 248–256. Doi: https://doi.org/10.1016/j.renene.2016.12.063
  • Zhang, M., Li, X., Tong, J. & Xu, J. (2020). Load control of floating wind turbine on a tension-leg-platform subject to extreme wind condition. Renewable Energy, 151, 993–1007. Doi: https://doi.org/10.1016/j.renene.2019.11.093
Mühendis ve Makina-Cover
  • ISSN: 1300-3402
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1957
  • Yayıncı: TMMOB MAKİNA MÜHENDİSLERİ ODASI