30kWp Çatı Tipi PV Santralinin 3 Yıllık Enerjik ve Ekonomik Analizi

30 kWp'lik bir çatı üstü fotovoltaik (FV) güneş enerji santrali, enerji dengesi denklemleri kullanılarak modellenmiş ve 3 yıllık enerji üretimi ile ekonomik getirisi kurulduğu gündeki tarife anlaşmasına göre hesaplanmıştır. Excel’de yapılan modelleme ve benzetim sonuçları ile sistemden saatlik bazda ölçülen elektrik üretimi verilerinin oldukça uyumlu olduğu görülmüştür. Sistem 1., 2. ve 3. yılda sırasıyla 45,35 MWh, 47,05 MWh ve 46,34 MWh enerji üretmiştir. FV sistemin performans oranının %84,50 ile %90,27 arasında değişirken, kapasite faktörünün de %17,26 ile %17,63 arasında değiştiği gözlemlenmiştir. 3 yılda üretim fazlası olarak 93,90 MWh elektrik enerjisi şebekeye verilirken, şebekeden 46,40 MWh enerji çekilmiştir. Enjekte edilen ve tüketilen elektriğin bedeli, sistemin kurulduğu andaki bağlantı anlaşması koşullarına göre hesaplanmış ve geri ödeme süresi yaklaşık 6 yıl olarak bulunmuştur.

3-Years Energetic and Economic Analysis of a 30kWp Rooftop PV Power Plant

A 30 kWp rooftop solar photovoltaic (PV) power plant was modelled using energy balance equations, 3-year energy production and its economic return is calculated according to the feed-in tariff agreement. Hourly measured electricity generation and Excel spreadsheet simulation results were closely compatible. The system generated 45.35 MWh, 47.05 MWh and 46.34 MWh of energy in year 1, 2 and 3, respectively. It has been observed that the performance ratio of the PV system varies between 84.50 % and 90.27 %, while the capacity factor varies between 17.26 % and 17.63%. While 93.90 MWh of electrical energy has been injected into the grid over a 3-year period, 46.40 MWh of energy has been taken from the grid. The price of electricity injected and consumed was calculated according to the FIT conditions at the time the system was installed, and the payback period was calculated as approximately 6 years.

___

  • Adaramola, M. S. (2015). Techno-economic analysis of a 2.1 kW rooftop photovoltaic-grid-tied system based on actual performance. Energy Conversion and Management, 101, 85–93. https://doi.org/10.1016/j.enconman.2015.05.038
  • Adaramola, M. S., & Vågnes, E. E. T. (2015). Preliminary assessment of a small-scale rooftop PV-grid tied in Norwegian climatic conditions. Energy Conversion and Management, 90 (2015), 458–465. https://doi.org/10.1016/j.enconman.2014.11.028
  • Al-Otaibi, A., Al-Qattan, A., Fairouz, F., & Al-Mulla, A. (2015). Performance evaluation of photovoltaic systems on Kuwaiti schools’ rooftop. Energy Conversion and Management, 95, 110–119. https://doi.org/10.1016/j.enconman.2015.02.039
  • Ates, A. M., & Singh, H. (2021). Rooftop solar Photovoltaic (PV) plant – One year measured performance and simulations. Journal of King Saud University - Science, 33(3), 101361. https://doi.org/10.1016/j.jksus.2021.101361
  • Ates, A. M., Yilmaz, O. S., & Gulgen, F. (2020). Using remote sensing to calculate floating photovoltaic technical potential of a dam’s surface. Sustainable Energy Technologies and Assessments, 41(July), 100799. https://doi.org/10.1016/j.seta.2020.100799
  • Attari, K., Elyaakoubi, A., & Asselman, A. (2016). Performance analysis and investigation of a grid-connected photovoltaic installation in Morocco. Energy Reports, 2 (December 2015), 261–266. https://doi.org/10.1016/j.egyr.2016.10.004
  • Ayompe, L. M., Duffy, A., McCormack, S. J., & Conlon, M. (2011). Measured performance of a 1.72 kW rooftop grid connected photovoltaic system in Ireland. Energy Conversion and Management, 52(2), 816–825. https://doi.org/10.1016/j.enconman.2010.08.007
  • BP. (2019). Statistical Rewiev of World Energy. London, UK.
  • Cherfa, F., Hadj Arab, A., Oussaid, R., Abdeladim, K., Bouchakour, S., Arab, A. H., … Bouchakour, S. (2015). Performance Analysis of the Mini-grid Connected Photovoltaic System at Algiers. Energy Procedia, 83, 226–236. https://doi.org/10.1016/j.egypro.2015.12.177
  • Cole, R. J., & Sturrock, N. S. (1977). The convective heat exchange at the external surface of buildings. Building and Environment, 12 (4), 207–214. https://doi.org/https://doi.org/10.1016/0360-1323(77)90021-X
  • Cory, K., Couture, T., & Kreycik, C. (2009). Feed-in Tariff Policy: Design, Implementation, and RPS Policy Interactions. United States. https://doi.org/10.2172/951016
  • Couture, T. D., Cory, K., Kreycik, C., & Williams, E. (2010). Policymaker’s Guide to Feed-in Tariff Policy Design. United States. https://doi.org/10.2172/984987
  • Couture, T., & Gagnon, Y. (2010). An analysis of feed-in tariff remuneration models: Implications for renewable energy investment. Energy Policy, 38(2), 955–965. https://doi.org/10.1016/j.enpol.2009.10.047
  • Dabou, R., Bouchafaa, F., Arab, A. H., Bouraiou, A., Draou, M. D., Neçaibia, A., & Mostefaoui, M. (2016). Monitoring and performance analysis of grid connected photovoltaic under different climatic conditions in south Algeria. Energy Conversion and Management, 130, 200–206. https://doi.org/10.1016/j.enconman.2016.10.058
  • Datta, U., Kalam, A., & Shi, J. (2020). The economic prospect of rooftop photovoltaic (PV) system in the commercial buildings in Bangladesh: a case study. Clean Technologies and Environmental Policy, 22(10), 2129–2143. https://doi.org/10.1007/s10098-020-01963-3
  • Decker, B., & Jahn, U. (1997). Performance of 170 grid connected PV plants in northern Germany - Analysis of yields and optimization potentials. Solar Energy, 59(4-6–6 pt 4), 127–133. https://doi.org/10.1016/S0038-092X(96)00132-6
  • Defaix, P. R., van Sark, W. G. J. H. M., Worrell, E., & de Visser, E. (2012). Technical potential for photovoltaics on buildings in the EU-27. Solar Energy, 86(9), 2644–2653. https://doi.org/10.1016/j.solener.2012.06.007
  • Dondariya, C., Porwal, D., Awasthi, A., Shukla, A. K., Sudhakar, K., Murali, M. M., & Bhimte, A. (2018). Performance simulation of grid-connected rooftop solar PV system for small households: A case study of Ujjain, India. Energy Reports, 4, 546–553. https://doi.org/10.1016/j.egyr.2018.08.002
  • Dubey, S., Sandhu, G. S., & Tiwari, G. N. (2009). Analytical expression for electrical efficiency of PV/T hybrid air collector. Applied Energy, 86(5), 697–705. https://doi.org/10.1016/j.apenergy.2008.09.003
  • Duffie, J. A., & Beckman, W. A. (1991). Solar Engineering of Thermal Processes (2nd ed.). Newyork: John Wiley & Sons Inc.
  • Ebhota, W. S., & Tabakov, P. Y. (2021). Assessment of solar PV potential and performance of a household system in Durban North, Durban, South Africa. Clean Technologies and Environmental Policy, (0123456789). https://doi.org/10.1007/s10098-021-02241-6
  • Eicker, U. (2014). Solar Thermal Technologies for Buildings. In Solar Thermal Technologies for Buildings (1st ed.). West Sussex, England: John Wiley & Sons Ltd. https://doi.org/10.4324/9781315074467
  • Eke, R., & Demircan, H. (2013). Performance analysis of a multi crystalline Si photovoltaic module under Mugla climatic conditions in Turkey. Energy Conversion and Management, 65, 580–586. https://doi.org/10.1016/j.enconman.2012.09.007
  • Emziane, M., & Al Ali, M. (2015). Performance assessment of rooftop PV systems in Abu Dhabi. Energy and Buildings, 108, 101–105. https://doi.org/10.1016/j.enbuild.2015.08.057
  • EPDK. Unlicensed Electricity Generation Regulation in the Electricity Market. Electricity Market Law § (2013). Turkey: TR Official Newspaper - 28783.
  • Farhoodnea, M., Mohamed, A., Khatib, T., & Elmenreich, W. (2015). Performance evaluation and characterization of a 3-kWp grid-connected photovoltaic system based on tropical field experimental results: New results and comparative study. Renewable and Sustainable Energy Reviews, Vol. 42, pp. 1047–1054. https://doi.org/10.1016/j.rser.2014.10.090
  • Fraunhofer ISE. (2020). Photovoltaics Report. Freiburg, Germany.
  • Gaur, A., & Tiwari, G. N. (2013). Performance of Photovoltaic Modules of Different Solar Cells. Journal of Solar Energy, 2013, 1–13. https://doi.org/10.1155/2013/734581
  • Humada, A. M., Hojabri, M., Hamada, H. M., Samsuri, F. B., & Ahmed, M. N. (2016). Performance evaluation of two PV technologies (c-Si and CIS) for building integrated photovoltaic based on tropical climate condition: A case study in Malaysia. Energy and Buildings, 119, 233–241. https://doi.org/10.1016/j.enbuild.2016.03.052
  • IEA, Clavadetscher, L., & Nordmann, T. (2007). Cost and performance trends in grid-connected photovoltaic systems and case studies, Report IEA-PVPS T2-06:2007. In L. Clavadetscher & T. Nordmann (Eds.), Report IEA-PVPS T2-06:2007. Erlenbach, Switzerland: International Energy Agency. Retrieved from International Energy Agency website: https://iea-pvps.org/wp-content/uploads/2020/01/rep2_07.pdf
  • IEC 61724. (1998). Photovoltaic system performance monitoring - guidelines for measurement, data exchange and analysis. Geneva, Switzerland.
  • Jahn, U., & Nasse, W. (2004). Operational performance of grid-connected PV systems on buildings in Germany. Progress in Photovoltaics: Research and Applications, 12, 441–448. https://doi.org/10.1002/pip.550
  • Kazem, H. A., Khatib, T., Sopian, K., & Elmenreich, W. (2014). Performance and feasibility assessment of a 1.4 kW roof top grid-connected photovoltaic power system under desertic weather conditions. Energy and Buildings, 82, 123–129. https://doi.org/10.1016/j.enbuild.2014.06.048
  • Kumar, N. M., Yadav, S. K., Chopra, S. S., Bajpai, U., Gupta, R. P., Padmanaban, S., & Blaabjerg, F. (2020). Operational performance of on-grid solar photovoltaic system integrated into pre-fabricated portable cabin buildings in warm and temperate climates. Energy for Sustainable Development, 57, 109–118. https://doi.org/10.1016/j.esd.2020.05.008
  • Kymakis, E., Kalykakis, S., & Papazoglou, T. M. (2009). Performance analysis of a grid connected photovoltaic park on the island of Crete. Energy Conversion and Management, 50(3), 433–438. https://doi.org/10.1016/j.enconman.2008.12.009
  • Lasfar, S., Haidara, F., Mayouf, C., Abdellahi, F. M., Elghorba, M., Wahid, A., & Kane, C. S. E. (2021). Study of the influence of dust deposits on photovoltaic solar panels: Case of Nouakchott. Energy for Sustainable Development, 63, 7–15. https://doi.org/10.1016/j.esd.2021.05.002
  • Leloux, J., Narvarte, L., & Trebosc, D. (2012). Review of the performance of residential PV systems in France. Renewable and Sustainable Energy Reviews, 16(2), 1369–1376. https://doi.org/10.1016/j.rser.2011.10.018
  • Milosavljević, D. D., Pavlović, T. M., & Piršl, D. S. (2015). Performance analysis of A grid-connected solar PV plant in Niš, republic of Serbia. Renewable and Sustainable Energy Reviews, 44, 423–435. https://doi.org/10.1016/j.rser.2014.12.031
  • Mondol, J. D., Yohanis, Y., Smyth, M., & Norton, B. (2006). Long term performance analysis of a grid connected photovoltaic system in Northern Ireland. Energy Conversion and Management, 47, 2925–2947. https://doi.org/10.1016/j.enconman.2006.03.026
  • Necaibia, A., Bouraiou, A., Ziane, A., Sahouane, N., Hassani, S., Mostefaoui, M., … Mouhadjer, S. (2018). Analytical assessment of the outdoor performance and efficiency of grid-tied photovoltaic system under hot dry climate in the south of Algeria. Energy Conversion and Management, 171(March), 778–786. https://doi.org/10.1016/j.enconman.2018.06.020
  • Njoku, H. O., & Omeke, O. M. (2020). Potentials and financial viability of solar photovoltaic power generation in Nigeria for greenhouse gas emissions mitigation. Clean Technologies and Environmental Policy, 22(2), 481–492. https://doi.org/10.1007/s10098-019-01797-8
  • Pietruszko, S. M., & Gradzki, M. (2003). Performance of a grid connected small PV system in Poland. Applied Energy, 74, 177–184. https://doi.org/10.1016/S0306-2619(02)00144-7 Ramanan, P., K., K. M., & Karthick, A. (2019). Performance analysis and energy metrics of grid-connected photovoltaic systems. Energy for Sustainable Development, 52, 104–115. https://doi.org/10.1016/j.esd.2019.08.001
  • REN21. (2019). Global Status Report. Paris, France.
  • Rughoo, D., & Ramasesha, S. K. (2020). Predicting the performance of a photovoltaic system in the island nation, Mauritius. Clean Technologies and Environmental Policy, 22(7), 1579–1587. https://doi.org/10.1007/s10098-020-01894-z
  • Sharma, R., & Goel, S. (2017). Performance analysis of a 11.2 kWp roof top grid-connected PV system in Eastern India. Energy Reports, 3, 76–84. https://doi.org/10.1016/j.egyr.2017.05.001
  • Sharma, V., & Chandel, S. S. (2013). Performance analysis of a 190kWp grid interactive solar photovoltaic power plant in India. Energy, 55, 476–485. https://doi.org/10.1016/j.energy.2013.03.075
  • Tırmıkçı, C. A., & Yavuz, C. (2020). Environmental impact of a 290.4 kWp grid-connected photovoltaic system in Kocaeli, Turkey. Clean Technologies and Environmental Policy, 22(9), 1943–1951. https://doi.org/10.1007/s10098-020-01927-7
  • Wittkopf, S., Valliappan, S., Liu, L., Ang, K. S., & Cheng, S. C. J. (2012). Analytical performance monitoring of a 142.5kW p grid-connected rooftop BIPV system in Singapore. Renewable Energy, 47, 9–20. https://doi.org/10.1016/j.renene.2012.03.034
  • WNA. (2011). Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources. In World Nuclear Association. London, UK. Retrieved from http://www.world-nuclear.org/uploadedFiles/org/WNA/Publications/Working_Group_Reports/comparison_of_lifecycle.pdf
  • Yadav, S. K., & Bajpai, U. (2018). Performance evaluation of a rooftop solar photovoltaic power plant in Northern India. Energy for Sustainable Development, 43, 130–138. https://doi.org/10.1016/j.esd.2018.01.006
  • Yamamoto, Y. (2012). Pricing electricity from residential photovoltaic systems: A comparison of feed-in tariffs, net metering, and net purchase and sale. Solar Energy, 86(9), 2678–2685. https://doi.org/10.1016/j.solener.2012.06.001
Mühendis ve Makina-Cover
  • ISSN: 1300-3402
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1957
  • Yayıncı: TMMOB MAKİNA MÜHENDİSLERİ ODASI