Tork Konvertör Tasarımında Farklı İç Torus Geometrilerinin Hidrodinamik Performans Açısından İncelenmesi

Tork konvertörler çoğunlukla otomatik transmisyon sistemlerinde kullanılan ve tork artırımı sağlayan özel hidrodinamik kaplinlerdir. Motor ve transmisyon arasında güç aktarımı sağladıklarından hidrodinamik performansları araç performansı üzerinde doğrudan etkilidir. Dolayısıyla aracın öngörülen koşullarda çalışabilmesi için doğru tork konvertörün tasarımı ve geliştirilmesi önemli bir rol oynamaktadır. Bu çalışmada, tork konvertörlerin torus kesitindeki birtakım geometrik değişimlerin hidrodinamik performansa olan etkisi incelenmiştir. Tork konvertörler için literatürde kabul gören, torus kesiti boyunca sirküle olan akışın yörüngesine dik olan alanın sabit tutulduğu alışılagelmiş bir tasarım yaklaşımı bulunmaktadır. Öncelikle bu yaklaşım kullanılarak bir tork konvertör tasarlanmıştır. Ardından bu yöntem basitleştirilerek, yalnızca kademeler arası geçişte yer alan arayüzlerin akış yörüngesine dik olan alanlarının eşit tutulduğu bir başka konvertör tasarlanmıştır. Tasarlanan iki konvertörün hesaplamalı akışkanlar dinamiği (HAD) yaklaşımıyla performans analizleri gerçekleştirilmiştir. Sonuçlar iki tork konvertörün hidrodinamik performanslarının birbirleriyle oldukça benzer olduğunu göstermiştir. Bu basitleştirme ile konvertörün analitik tasarımı kolaylaştırılmıştır. Bunun ardından basitleştirilmiş yöntem ile tasarlanan konvertörün iç torus kesit radyal konumları değiştirilerek 4 farklı konvertör oluşturulmuş ve HAD yaklaşımıyla analizleri gerçekleştirilmiştir. Sonuçlar incelendiğinde, iç torus kesit konumlarının değişiminin tork konvertörlerin hidrodinamik performanslarını olumsuz yönde etkilediği görülmüştür.

Investigation Of Different Inner Torus Geometries in Terms of Hydrodynamic Performance For Torque Converter Design

Torque converters are specific type of hydrodynamic couplings mostly used in automatic transmission systems for torque multiplication. Their hydrodynamic performances have a direct effect on vehicle performance since they transfer power between engine and transmission. Therefore, design and development process of an accurate torque converter plays a crucial role for a vehicle to operate in predicted conditions. In the present study, the effect of some geometric changes at torus cross-section of a torque convertor on hydrodynamic performance was investigated. There is a common design approach for torque converters in the literature which is the perpendicular area to the circulating flow trajectory along the torus section is kept constant. First of all, a torque converter was designed by using this approach. Then, this method was simplified and only the interface areas of the stages which are perpendicular to circulating flow trajectory were kept equal. Performance analyses of these torque converters were carried out by computational fluid dynamics (CFD) approach. Results showed that the hydrodynamic performances of two torque convertors are pretty similar to each other. With this simplification, analytical design of the torque converter is simplified. After that, four different torque converters were designed by changing the inner torus section radial locations of the converter which is designed with simplified approach and CFD simulations were also carried out. It is concluded that the changes in the inner torus section radial location have a negative influence on hydrodynamic performance of torque converters.

___

  • Jandasek, V. (1961). Design of Single-Stage, Three-Element Torque Converter. SAE Special Publication SP-186. Doi: https://doi.org/10.4271/610576
  • Jeyakumar, S. ve Sasikumar, M. (2017). Computational Fluid Dynamics Simulation of Hydraulic Torque Converter for Performance Characteristics Prediction. International Journal of Scientific Research in Science, Engineering and Technology, 3, 402-408. Doi: https://doi.org/10.32628/IJSRSET173697
  • Kim, B., Ha, S., Lim, S. ve Cha, S. (2008). Performance Estimation Model of a Torque Converter Part I: Correlation Between the Internal Flow Field and Energy Loss Coefficient. International Journal of Automotive Technology, 9, 141-148. Doi: https://doi.org/10.1007/s12239-008-0018-5
  • Kotwicki, A. (1982). Dynamic Models for Torque Converter Equipped Vehicles. SAE International Congress and Exposition. Doi: https://doi.org/10.4271/820393
  • Liu, C., Xiang, C., Yan, Q., Wei, W., Watson, C. ve Wood, H. G. (2019). Development and Validation of a CFD Based Optimization Procedure for the Design of Torque Converter Cascade. Engineering Applications of Computational Fluid Mechanics, 13, 128-141. Doi: https://doi.org/10.1080/19942060.2018.1562383
  • Schweitzer, J. ve Gandham, J. (2003). Computational Fluid Dynamics in Torque Converters: Validation and Application. International Journal of Rotating Machinery, 9, 411-418. Doi: https://doi.org/10.1155/S1023621X03000393
  • Srinivasan, C., Joshi, D., Dhar, S. ve Wang, D. (2016). Dynamic Three-Dimensional CFD Simulation of Closed Circuit Torque Converter Systems. SAE International Journal of Passenger Cars - Mechanical Systems, 9. Doi: https://doi.org/10.4271/2016-01-1345
  • Stern, F., Wilson, R., Coleman, H. ve Paterson, E. (2001). Comprehensive approach to verification and validation of CFD simulations - Part 1: Methodolgy and procedures. Journal of Fluids Engineering - Transactions of the ASME, 123(4), 793-802. Doi: https://doi.org/10.1115/1.1412235
  • Whitfield, A., Wallace, F. ve Patel, A. (1983). Design of Three Element Hydrokinetic Torque Converters. International Journal of Mechanical Sciences, 25(7), 485-497. Doi: https://doi.org/10.1016/0020-7403(83)90041-3
  • Wikimedia Commons. (2007). Erişim adresi: https://commons.wikimedia.org/wiki/File:Bauma_2007_ZF_Drehmomentwandler.jpg
  • Yamaguchi, T. ve Tanaka, K. (2012). Torque Converter Transient Characteristics Prediction Using Computational Fluid Dynamics. IOP Conference Series: Earth and Environmental Science (EES), 15. Doi: https://doi.org/10.1088/1755-1315/15/4/042020
  • Zhang, Y. ve Mi, C. (2018). Automotive Power Transmission Systems. Hoboken, NJ: John Wiley & Sons. Doi: https://doi.org/10.1002/9781118964897
Mühendis ve Makina-Cover
  • ISSN: 1300-3402
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1957
  • Yayıncı: TMMOB MAKİNA MÜHENDİSLERİ ODASI