Grafen Oksit (GO)-Su Nanoakışkanlı ve Kanatçıklı Birleşik Jet Akışlı Kanallarda Isı Transferinin Araştırılması

Bu çalışmada, birleşik jet akışıyla kanatçıksız ve farklı kanatçık mesafeli (N = D ve 2D) ve 60o açılı kanallarda su ve %0.02 hacimsel konsantrasyonlu GO (Grafen Oksit)-Su nanoakışkanı kullanılmasıyla yamuk ve taç desenli yüzeylerden olan ısı transferi ve performans analizi sayısal olarak incelenmiştir. Sayısal araştırma, zamandan bağımsız ve üç boyutlu, k-ε türbülans modelli Ansys-Fluent programıyla gerçekleştirilmiştir. Çalışmanın sonuçları, literatürdeki deneysel çalışmanın Nu sonuçlarıyla kıyaslanmış ve uyumlu oldukları görülmüştür. N = 2D ve Re = 15000’ de her üç yamuk ve taç desenli yüzeylerde nanoakışkanın ortalama Num sayılarının kanatçıksız ve su akışkanına göre sırasıyla %18.35 ve %24.09 daha fazla olduğu bulunmuştur.

Investigation of Heat Transfer in Combined Jet Flow Channels With Graphene Oxide (Go)-Water Nanofluid and Fin

In this study, heat transfer from trapezoidal and crown patterned surfaces and performance analysis were investigated numerically by using water and 0.02% volumetric concentration GO (Graphene Oxide)-Water nanofluid in channels without fin and different fin distances (N = D and 2D) and 60o angle with combined jet flow. Numerical analysis was carried out steady and in three dimensions with the k-ε turbulence model Ansys-Fluent program. The outcomes of the work were matched with the Nu outcomes of the experimental work in the literature and they were discovered to be compatible. At N = 2D and Re = 15000, the average Num numbers of the nanofluid on all three trapezoidal and crown-patterned surfaces were found to be 18.35% and 24.09% higher than the without fin and water fluid, respectively.

___

  • Abdullah, M. F., Zulkifli, R., Harun, Z., Abdullah, S., Wan Ghopa, W. A., Najm, A. S., Sulaiman, N.H. (2019). Impact of the TiO2 nanosolution concentration on heat transfer enhancement of the twin ımpingement jet of a heated aluminum plate. Micromachines, 10, 176. Doi. https://doi.org/10.3390/mi10030176
  • Alnak, D. E. (2020). Thermohydraulic performance study of different square baffle angles in cross-corrugated channel. Journal of Energy Storage, 28, 101295. Doi. https://doi.org/10.1016/j.est.2020.101295
  • Alnak, D. E., Koca, F., Alnak, Y. A. (2021). A numerical investigation of heat transfer from heated surfaces of different shapes. Journal of Engineering Thermophysics, 30, 494-507. Doi. https://doi.org/10.1134/S1810232821030127
  • Chang, T. B., Yang, Y. K. (2014). Heat Transfer Performance of Jet Impingement Flow Boiling Using Al2O3-Water Nanofluid, Journal of Mechanical Science and Technology, vol. 28, no. 4, p. 1559-1566. Doi. https://doi.org/10.1007/s12206-013-1143-2
  • Datta, A., Jaiswal, A., Halder, P. (2018). Heat transfer analysis of slot jet impingement using nano fluid on convex surface. IOP Conference Series-Materials Science and Engineering, 402, 012098. Doi. https://doi.org/10.1088/1757-899X/402/1/012098
  • Demircan, T. (2019). Numerical analysis of cooling an electronic circuit component with cross flow and jet combination. Journal of Mechanics, 35 (3), 395-404. Doi. https://doi.org/10.1017/jmech.2018.11 Hadipour, A., Zargarabadi, M. R. (2018). Heat transfer and flow characteristics of impinging jet on a concave surface at small nozzle to surface distances. Applied Thermal Engineering, 138, 534-541. Doi. https://doi.org/10.1016/j.applthermaleng.2018.04.086
  • Hajjar, Z., Rashidi, A., Ghozatloo, A. (2014). Enhanced thermal conductivities of graphene oxide nanofluids. International Communications in Heat and Mass Transfer, 57, 128-131. Doi. https://doi.org/10.1016/j.icheatmasstransfer.2014.07.018
  • Hummers, W. S., Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of American Chemical Society, 80, 1339. https://doi.org/10.1021/ja01539a017
  • Incropera, F. P., Dewit, D. P., Bergman, T. L., Lavine, A. S. (2007). Fundamentals of heat and mass transfer. United States of America: Purdue University. Erişim Adresi. https://www.wiley.com/en-us/Fundamentals+of+Heat+and+Mass+Transfer%2C+8th+Edition-p-9781119353881
  • Jalali, E., Sajadi, S. M., Ghaemi, F., Baleanu, D. (2022). Numerical analysis of the effect of hot dent infusion jet on the fluid flow and heat transfer rate through the microchannel in the presence of external magnetic field. Journal of Thermal Analysis and Calorimetry, 147, 8397-8409. Doi. https://doi.org/10.1007/s10973-021-11095-5 Karabulut, K., Alnak, D. E. (2021). Dikdörtgen bir kanaldaki farklı desenli yüzey geometrilerinin ısı transferine olan etkilerinin incelenmesi. Tesisat Mühendisliği Dergisi, 183, 37-49. Erişim adresi. https://search.trdizin.gov.tr/tr/yayin/detay/440785/
  • Karabulut, K., Alnak, D. E. (2021). Investigation of graphene oxide-distilled water nanofluids with consideration of heat transfer and flow structure for backward-facing step flow. Journal of Engineering Thermophysics, 30 (2), 300-316. Doi. https://doi.org/10.1134/S1810232821020119
  • Karabulut, K., Alnak, D. E. (2021). Investigation of the variation of cooling performance with the channel height in a channel having impinging jet-cross flow. ISPEC 12th International Conference on Engineering & Natural Sciences The Proceedings Book, 273-290, Bingöl. Erişim Adresi. https://www.ispecongress.org/_files/ugd/d0a9b7_0158c789045b4e42a2bca2583fbd0508.pdf
  • Karabulut, K., Alnak, D. E. (2020). Study of cooling of the varied designed warmed surfaces with an air jet impingement. Pamukkale University Journal of Engineering Sciences, 26 (1), 88-98. Doi. https://doi.org/10.5505/pajes.2019.58812
  • Karabulut, K. (2015). Isı değiştiricilerde ısı aktarımının nanoakışkanlar kullanılarak arttırılması. (Doktora Tezi), Sivas Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, Sivas. Erişim Adresi. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=p8IvMw5P60kRwi7dNGAqTA&no=w_5rR9PaQst_Qw4Xufr3mw
  • Kılıç, M. (2018). Elektronik sistemlerin soğutulmasında nanoakışkanlar ve çarpan jetlerin müşterek etkisinin incelenmesi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 18; 33 (3), 121-132. Doi. https://doi.org/10.21605/cukurovaummfd.500597
  • Kumar, D., Zunaid, M., Gautam, S. (2021). Heat sink analysis in jet impingement with air foil pillars and nanoparticles. Materials Today: Proceedings, 46 (20), 10752-10756. Doi. https://doi.org/10.1016/j.matpr.2021.01.582
  • Ma, C. F., Bergles, A. E. (1983) Boiling jet impingement cooling of simulated microelectronic chips. Heat Transfer in Electronic Equipment HTD, 28, 5-12. Erişim Adresi. https://ui.adsabs.harvard.edu/abs/1983htee.proc....5B/abstract
  • Maghrabie, H. M., Attalla, M., Fawaz, H. E., Khalil, M. (2017). Numerical ınvestigation of heat transfer and pressure drop of in-line array of heated obstacles cooled by jet impingement in cross-flow. Alexandria Engineering Journal, 56, 285-296. Doi. https://doi.org/10.1016/j.aej.2016.12.022
  • Mergen, S. (2014). Kanal içi akış ve çarpan jet ile birlikte elektronik eleman soğutulmasının sayısal olarak İncelenmesi (Yüksek Lisans Tezi). Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara. Erişim Adresi. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=sV6jYWEcQ5UbNMOJ40X3oA&no=h00qZ76hoJVOgsma89qMjg
  • Naga Ramesh, K., Karthikeya Sharma, T. ve Amba Prasad Rao, G. (2021). Latest advancements in heat transfer enhancement in the micro‑channel heat sinks: a review. Archives of Computational Methods in Engineering, 28, 3135-3165. Doi. https://doi.org/10.1007/s11831-020-09495-1
  • Pak, B.C., Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer, 11 (2), 151-170. Doi. https://doi.org/10.1080/08916159808946559
  • Saleha, N., Fadela, N., Abbes, A. (2015). Improving cooling effectiveness by use chamfers on the top of electronic components. Microelectronics Reliability, 55, 1067-1076. Doi. https://doi.org/10.1016/j.microrel.2015.04.006
  • Selimefendigil, F., Chamkha, A. J. (2020). Cooling of an ısothermal surface having a cavity component by using CuO-water nano-jet. International Journal of Numerical Methods for Heat & Fluid Flow, 30 (4), 2169-2191. Doi. https://doi.org/10.1108/HFF-12-2018-0724
  • Shi, W., Li, F., Lin, Q., Fang, G. (2021). Experimental study on instability of round nanofluid jets at low velocity. Experimental Thermal and Fluid Science, 120, 110253. Doi. https://doi.org/10.1016/j.expthermflusci.2020.110253
  • Öztürk, S. M., Demircan, T. (2022). Numerical analysis of the effects of fin angle on flow and heat transfer characteristics for cooling an electronic component with impinging jet and cross-flow combination. Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (1), 57-74. Doi. https://doi.org/10.17341/gazimmfd.799793
  • Taylor, J. R. (1997). An introduction to error analysis: The study of uncertainties in physical measurements. United States of America: University science books. Erişim Adresi. https://uscibooks.aip.org/books/an-introduction-to-error-analysis-the-study-of-uncertainties-in-physical-measurements-third-edition/
  • Teamah, M. A., Dawood, M. M., Shehata, A. (2015). Numerical and experimental investigation of flow structure and behavior of nanofluids flow impingement on horizontal flat plate. Experimental Thermal and Fluid Science, 74, 235-246. Doi. https://doi.org/10.1016/j.expthermflusci.2015.12.012
  • Wang, S. J., Mujumdar, A. S. (2005). A comparative study of five low Reynolds number k-ε models for impingement heat transfer. Applied Thermal Engineering, 25, 31-44. Doi. https://doi.org/10.1016/J.APPLTHERMALENG.2004.06.001
Mühendis ve Makina-Cover
  • ISSN: 1300-3402
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1957
  • Yayıncı: TMMOB MAKİNA MÜHENDİSLERİ ODASI