SAHA KOŞULLARINDA DEPOLANAN BİYOKÜTLE YAKITLARINDA OLUŞAN KURU MADDE KAYIPLARININ İNCELENMESİ

Biyokütleden enerji üretiminde, girdi maliyetlerinin en yüksek parametresi lojistik operasyonlardan kaynaklanmaktadır. Mevsimsel tedarik koşulları ele alınarak karakterize edildiğinde biyokütle lojistiğindeki en önemli konu depolama süreçleridir. Heterojen yapısı nedeniyle katı biyokütlenin uygun bir şekilde depolanması ve efektif yakılması, fosil yakıtlarla mukayese edildiğinde çok daha zor ve sorunlu olabilmektedir. Depolama sürecinde biyokütle enerjisinde ciddi kayıplar oluşabileceği için uygun depolama şartlarının belirlenmesinin önemi açıktır. Yakıtın kullanıma uygun olarak saklanabilmesi hem teknik hem de ekonomik açıdan hayati bir öneme sahiptir. Bu çalışmada; 13 aylık periyotta ve farklı iklim koşullarında 5 farklı biyokütle hammaddesinin (saz kamışı, mısır sapı, çam kapağı, kavak kapağı, ağaç kökü) açık alanda depolanmasının hammadde bazında karakterizasyonu, nem içeriği, enerji içeriği, kuru madde kaybı ve kül miktarı değişimleri incelenmiştir. Silolarda ürün bazında deney başlangıcında yapılan ilk tartım ve son tartım arasında oluşan fark üzerinden hesaplanan toplam kuru madde kayıpları; kavak kapağında %38, mısır sapında %35, çam kapağında %32, ağaç kökünde %25 saz kamışında ise %11 oranında çıkmıştır. Toplam kuru madde kaybı içeriğinde, nemden kaynaklı kuru madde kaybı %92 ile en yüksek ağaç kökünde, mikrobiyolojik bozulmadan kaynaklı kuru madde kaybı oranı ise %86 ile en yüksek mısır sapında gerçekleşmiştir.

INVESTIGATION OF DRY MATERIAL LOSSES CAUSED BY STORING FIVE DIFFERENT BIOMASS SOLID FUEL UNDER FIELD CONDITIONS

In energy production from biomass, the highest parameter of input costs arises from logistics operations. When characterized by considering seasonal supply conditions, the most important issue in biomass logistics is storage processes. Due to its heterogeneous nature, proper storage and effective combustion of solid biomass can be much more difficult and problematic compared to fossil fuels. The importance of determining the appropriate storage conditions is obvious, as serious losses in biomass energy may occur during the storage process. Storing the fuel suitable for use is of vital importance, both technically and economically. In this study, the characterization, moisture content, energy content, dry matter loss and ash content changes of the open storage of 5 different biomass raw materials (reed cane, cornstalk, pine, poplar, tree root) in different climatic conditions over a 13-month period were investigated statistically. Total dry matter losses calculated on the basis of the difference between the first weighing and the last weighing at the beginning of the test on the basis of the product in the silos are 38% for poplar cover, 35% for corn stalk, 32% for pine cover, 25% for tree roots and 11% for reed cane. In the total dry matter loss content, the highest dry matter loss rate due to moisture was in the tree root with 92%, and the dry matter loss rate due to microbiological degradation was the highest in corn straw with 86%.

___

  • Acar, B., Dağdeviren, A., Janaani, A., Roshanaei, K., Taşkesen, E., Ongun, K. G., Özkaymak M. (2021). “Freeze - drying of carrot slices in diverse thicknesses”, International Journal of Energy Studies 6(1);53-65
  • Allen J, Browne M, Hunter A, Boyd J, Palmer H. (1998). Logistics management and costs of biomass fuel supply. Int J Phys Distrib Logistics Manage 28:463–77.
  • Bjorheden, R., Richardson, J., Hakkila, P., (2002). Bioenergy from Sustainable Forestry: Guiding Principles and Practice, Kluwer Academic Publishers [http://site.ebrary.com/lib/slub/docDetail.action?docID=10052679]
  • Chaoui, H., Eckhoff, S.R., (2014). Biomass feedstock storage for quantity and quality preser- vation. In: Shastri, Y., Hansen, A., Rodríguez, L., Ting, K.C. (Eds.), Engineering and Science of Biomass Feedstock Production and Provision. Springer, New York, NY.
  • Cundiff, J.S., Dias, N., Sherali, H.D., (1997). A linear programming approach for designing a herbaceous biomass delivery system. Bioresource Technology 59 (1), 47-55.
  • Ekpeni, L.E.N., Benyounis, K.Y., Ekpeni, F. N., Stokes, J. ve Olabi, A. G., (2014). Energy Diversity through Renewable Energy Source (RES) – A Case Study of Biomass. Energy Procedia, 61, 1740 –1747.
  • Filbakk, T., Høibø, O., Nurmi, J., (2011). Modelling natural drying efficiency in covered and uncovered piles of whole broadleaf trees for energy use, Biomass Bio-energ. 35 (1) 454-463.
  • Forest Research, Biomass Enegy Centre., (2022) Erişim adresi: http://www.biomassenergycentre.org.uk/.
  • Gavrilescu, D. (2008). Energy from biomass in pulp and paper mills. Environmental Engineering and Management Journal, 7 (5): 537-546.
  • Gürdil G.A.K., Baz Y.Ö., Demirel Ç. ve Demirel Bç., (2015). Yakıt Peleti ve Briketi İçin Güncellenmiş Avrupa Birliği Standartları ve İlgili Parametreler. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 29(2), 147-156.
  • Hamelinck, C.N., Suurs, R.A.A., Faaij, A.P.C., (2005). International bioenergy transport costs and energy balance. Biomass and Bioenergy 29 (2), 114-134.
  • Hedlund, F.H., Astad, J., Nichols, J., (2014). Inherent hazards, poor reporting and limited learning in the solid biomass energy sector: a case study of a wheel loader igniting wood dust, leading to fatal explosion at wood pellet manufacturer. Biomass and Bioenergy 66, 450-459.
  • Hofmann, N. et al., (2017). Drying effects and dry matter losses during seasonal storage of spruce wood chips under practical conditions, Biomass and Bioenergy http://dx.doi.org/10.1016/j.biombioe.
  • Huéscar Medina, C., Phylaktou, H.N., Sattar, H., Andrews, G.E., Gibbs, B.M., (2013). The development of an experimental method for the determination of the minimum explosible concentration of biomass powders. Biomass and Bioenergy 53, 95-104.
  • Huisman, W., Venturi, P., Molenaar, J., (1997). Costs of supply chains of Miscanthus giganteus. Industrial Crops and Products 6, 353-366.
  • Huisman, W., (2003). Optimising harvesting and storage systems for energy crops in The Netherlands. In: International Conference on Crop Harvesting and Processing, pp. 1-19.
  • Kollmann, F., (1951). Technologie des Holzes und der Holzwerkstoffe: Erster Band: Anatomie und Pathologie, Chemie, Physik, Elastizita€t und Festigkeit, Springer, Berlin,
  • Kurnuç Seyhan, A. & Badem, A. (2021). Erzincan ili hayvansal atık kaynaklı biyogaz potansiyelinin değerlendirilmesine yönelik biyogaz tesisi senaryoları . Gümüşhane Üniversitesi Fen Bilimleri Dergisi , 11 (1) , 245-256 . DOI: 10.17714/gumusfenbil.743724
  • Langer, K. (1990). Fluidized Bed Combustion in the Pulp and Paper Industry. Enviromental Conference, Tappi Proceedings, pp. 207-218.
  • Lehtikangas P., (1998). Lagringshandbok för trädbränslen, Swedish University of Agricultural Sciences, Inst för virkeslära ISBN 91-576-55664-2
  • Ottan Çöpten Enerji Dr. F. Figen AR Enerji ve Çevre Dünyası Dergisi 143. Sayı. (2018). Erişim Adresi: http://www.enerji-dunyasi.com/edergi/6/143/24/#zoom=z
  • Österreichisches Normungsinstitut, Hackgut für energetische Zwecke (1998). - Anforderungen und Prüfbestimmungen (M 7133), Wien
  • Özben Kutlu (2016). Biyokömürleştirme İçin Parabolik Güneş Yoğunlaştırıcılı Sistem Tasarımı, Kurulumu ve Farklı Biyokütle Kaynakları İçin Optimum İşletme Koşullarının Belirlenmesi (Doktora Tezi) Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Rentizelas, A., Tolis, A., Tatsiopoulos, I., (2009). Logistics issues of biomass: the storage problem and the multi-biomass supply chain. Renewable and Sustainable Energy Reviews 13 (4), 887-894.
  • Rentizelas, A., (2013). Biomass supply/process chain. In: Rosendahl, L. (Ed.), Biomass Combustion Science, Technology and Engineering. Woodhead Publishing Ltd.
  • Samuelsson, R., Burvall, J., Jirjis, R., (2006). Comparison of different methods for the determination of moisture content in biomass. Biomass and Bioenergy 30 (11), 929-934.
  • Skoulou V, Zabaniotou A. (2007). Investigation of agricultural and animal wastes in Greece and their allocation to potential application for energy produc- tion. Renew Sustain Energy Rev 11:1698–719.
  • Sokhansanj, S., Kumar, A., Turhollow, A., (2006). Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass and Bioenergy 30 (10), 838-847.
  • Strömberg, B. (2005). Bränslehandboken, Handbook of fuel, Värmeforsk, ISSN 0282-3772
  • Taşkesen E., Acar Ş., Arlı F., Dumrul H., Ertuğrul G., Bülbül Ş. ve Özcan E., (2022). “Şırnak-Uludere bölgesinde yaygın olarak bulunan asfaltitlerden doğal hümik asit elde edilebilirliğinin incelenmesi”, Politeknik Dergisi, 25(2): 691-697,
  • Thörnqvist, T., (1984). Hyggesrester som råvara för energiproduktion – Torkning, lagring, hantering och kvalitet, Swedish University of Agricultural Sciences, Dep. Of forest production, Report no 152
  • Thörnqvist, T., (1985). Drying and storage of forest residues for energy production, Swedish University of Agricultural Sciences, Dep. Of forest production, Research note no 155, ISBN: 91-576-2438-0
  • Thörnqvist, T., (1987). Spontaneous combustion in piles with comminuted wood fuel, Swedish University of Agricultural Sciences, Dep. Of forest production, Research note no 163, Inst. För vikeslära ISBN 91-576-3075-5
  • Thörnqvist, T. and Jirjis, R., (1990). Bränsleflisens förändring över tiden – vid lagring I stora stackar, Changes in fuel chips during storage in large piles, Swedish University of Agricultural Sciences, Institutionen för virkeslära, Report no. 219, ISSN 0348-4599
  • US Energy İnformation Administration. Erişim Adresi: https://www.eia.gov/energyexplained/biomass/
  • Van Loo, S., Koppejan, J., (2012). The Handbook of Biomass Combustion and Co-firing. Earthscan.
  • Wihersaari M., (2005). “Evaluation of greenhouse gas emission risks from storage of wood residue” Biomass and Bioenergy 28 444–453
  • Wilén, C., (2004). Review of waste processing technology for SRF
  • Yrjöla, J. (2006). Modelling and Experimental Study on Wood Chips Boiler System with Fuel Drying and with Different Heat Exchangers. Doctoral Dissertation, Helsinki University of Technology Department of Mechanical Engineering Laboratory of Applied Thermodynamics, Espoo, Finland, 69 pp.