FOTOVOLTAİK MODÜLLERİN SÜRDÜRÜLEBİLİRLİĞİNDE YAŞANAN İKARUS SENDROMU

Bu çalışmada, fosile dayalı enerji kaynaklarının tüketiminin azaltılmasında önemli bir role sahip olan fotovoltaik (FV) sistemler, sürdürülebilirlik kapsamında incelenmiştir. Yenilenebilir enerji kaynaklarından elektrik üretiminde kullanılan teknolojiler arasında önemli bir paya sahip olan FV sistemler, görünür gelecekte ekonomik ömürlerini tamamladıklarında çevresel ve ekonomik sonuçlara sebep olacaktır. FV modüller ortalama 25-30 senelik ömür süresi boyunca temiz enerji üretimine katkı sağlarken dünyamız için oluşturacağı potansiyel tehlikeleri de bünyesinde barındırmaktadır. Yakın gelecekte daha yoğun bir şekilde karşımıza çıkacak olan FV modül atıklarla ilgili üreticilerin, kullanıcıların, devletlerin ve araştırmacıların daha hızlı bir şekilde sorumluluk alması ve eylem planlarının hayata geçirilebilmesi için FV modüllerin geri dönüştürülerek çeşitli endüstriyel alanlara yeniden kazandırılması ve gerekli girişimlerin politikalarla desteklenmesi gerekmektedir. Aksi takdirde, FV modüllerde yer alan kritik minerallerin hammadde kaynaklarının tükenmesi tehlikesi artarken, geri dönüşümü yapılmadan çevreye bırakılan FV modüller çevresel tehditler oluşturmaya devam edecektir. Gerçekleştirilen çalışmada, Türkiye’nin 2050 yılına kadar sahip olacağı FV sistem kurulu güçleri ve oluşacak FV modül atık miktarları on yıllık periyotlarla değerlendirilmiştir. Kurulu güç tahminleri için aylık ve yıllık artışlar ayrı ayrı göz önüne alınarak, Enerji ve Tabii Kaynaklar Bakanlığı (ETKB) tarafından yayınlanan verilerle karşılaştırılmıştır. Atık potansiyeli tahminleri, ekonomik ömür sonu ve erken dönem atıkları olarak ele alınmıştır. Toplam atık potansiyeli, Uluslararası Enerji Ajansı (IEA) ve Uluslararası Yenilenebilir Enerji Ajansı (IRENA) tarafından yayınlanan gelecek projeksiyonlarına göre değerlendirilmiştir. Elde edilen sonuçlarda, FV kurulu güç tahminlerinin ETKB tahminleri ile benzerlik gösterdiği, atık potansiyelinin IEA ve IRENA’nın ülkemiz için hazırladığı projeksiyonların yaklaşık üç katı büyüklüğünde olacağı görülmektedir. Buna göre, FV modüller geri dönüştürülmediği takdirde, çevresel atık potansiyelinin 2050 yılında 1 milyon 706 bin 159 tona ulaşacağı tahmin edilmektedir.

ICARUS SYNDROME IN THE SUSTAINABILITY OF PHOTOVOLTAIC MODULES

In this study, photovoltaic (PV) systems, which have a key role in reducing the consumption of fossil-based energy resources, are analyzed within the scope of sustainability. PV systems, which have an important share among renewable energy sources, will cause environmental and economic consequences at the end of their economic life. While PV modules contribute to clean energy production for an average lifetime of 25-30 years, they also contain potential dangers for our world. Producers, consumers, governments, and researchers related to PV module wastes, which will be encountered more intensively in the near future, should take responsibility more quickly and initiatives on this issue should be supported by policies. In this study, the PV system installed capacity and the amount of PV module waste that will be generated in Turkey until 2050 are evaluated in ten-year periods. Monthly and annual increases are considered separately for the installed capacity estimates and compared with the data published by the Ministry of Energy and Natural Resources (MENR). Waste potential estimates are considered as end-of-economic life and early waste. The total waste potential is evaluated according to future projections published by the International Energy Agency (IEA) and the International Renewable Energy Agency (IRENA). The results show that the PV installed capacity estimates are close to the ETKB estimates, and the waste potential will be approximately three times the size of the projections prepared by IEA and IRENA for Turkey. Accordingly, PV module waste potential is estimated to reach 1 million 706 thousand 159 tons in 2050.

___

  • Akimoto, Y., Iizuka, A., & Shibata, E. (2018). High-voltage pulse crushing and physical separation of polycrystalline silicon photovoltaic panels. Minerals Engineering, 125 (May), 1–9. doi:https://doi.org/10.1016/j.mineng.2018.05.015
  • Balch, D. R., & Armstrong, R. W. (2010). Ethical marginality: The icarus syndrome and banality of wrongdoing. Journal of Business Ethics, 92 (2). doi: https://doi.org/10.1007/s10551-009-0155-4
  • Çanka, F. (2015). Güneş Enerjisi, Türkiye’deki Son Durumu ve Üretim Teknolojileri. Mühendis ve Makina.
  • Chowdhury, M. S., Rahman, K. S., Chowdhury, T., Nuthammachot, N., Techato, K., Akhtaruzzaman, M., … Amin, N. (2020). An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews, 27, 100431. doi: https://doi.org/10.1016/j.esr.2019.100431
  • Council of the European Union. (2019). Directive 2011/7/EU on waste electrical and electronic equipment (WEEE). Official Journal of the European Union, (June), 38–71. doi: https://doi.org/10.5040/9781782258674.0030
  • Curtis, T. L., Buchanan, H., Smith, L., Heath, G., Curtis, T. L., Buchanan, H., … Heath, G. (2021). A Circular Economy for Solar Photovoltaic System Materials : Drivers , Barriers , Enablers , and U . S . Policy Considerations A Circular Economy for Solar Photovoltaic System Materials : Drivers , Barriers , Enablers, and U . S . Policy Considerations. (April), 89. Retrieved from https://www.nrel.gov.docs/fy21osti/74550
  • Deng, R., Zhuo, Y., & Shen, Y. (2022). Recent progress in silicon photovoltaic module recycling processes. Resources, Conservation and Recycling, 187 (July), 106612. doi: https://doi.org/10.1016/j.resconrec.2022.106612
  • Dias, P., Javimczik, S., Benevit, M., & Veit, H. (2017). Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules. Waste Management, 60, 716–722. doi: https://doi.org/10.1016/j.wasman.2016.08.036
  • EPA. (2022). Solar Panel Recycling. 1–56. Retrieved from https://www.epa.gov/hw/solar-panel-recycling
  • ETKB. (2022). TÜRKİYE Ulusal Enerji̇ Planı 2022. Retrieved from https://enerji.gov.tr/Media/Dizin/EIGM/tr/Raporlar
  • European Commission. (2022a). EU Solar Energy Strategy. Communication From the Commission To the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, 1(69), 5–24. Retrieved from https://eur-lex.europa.eu/resource.html?uri=cellar:516a902d-d7a0-11ec-a95f-01aa75ed71a1.0001.02/DOC_1&format=PDF
  • European Commission. (2022b). REPowerEU Plan - COM(2022) 230 final. 21. Retrieved from https://ec.europa.eu/commission/presscorner/detail/es/ip_22_3131
  • Fraunhofer ISE, & PSE Projects GmbH. (2022). Photovoltaics Report -2022- Fraunhofer ISE. (February), https://www.ise.fraunhofer.de/conte%0Ant/dam/ise/d.
  • Fthenakis, V., Athias, C., Blumenthal, A., Kulur, A., Magliozzo, J., & Ng, D. (2020). Sustainability evaluation of CdTe PV: An update. Renewable and Sustainable Energy Reviews, 123. doi: https://doi.org/10.1016/j.rser.2020.109776
  • Georgakakis, D., & Lebaron, F. (2018). Yanis (Varoufakis), the Minotaur, and the Field of Eurocracy. Historical Social Research, Vol. 43. doi: https://doi.org/10.12759/hsr.43.2018.3.216-247
  • Halevi, J., & Varoufakis, Y. (2003). The Global Minotaur: America, the True Origins of the financial crisis and the future of the world economy. Monthly Review, 55 (3).
  • HEINEMAN, R. (2011). The Icarus Syndrome: A History of American Hubris. Independent Review, 15 (3).
  • IEA. (2021a). The Role of Critical Minerals in Clean Energy Transitions. IEA Publications.
  • IEA. (2021b). World Energy Investment 2021. Retrieved from https://www.iea.org/data-and-statistics/data-product/world-energy-investment-2021-datafile
  • IEA. (2022a). Renewable Energy Market Update-May 2022. doi: https://doi.org/10.1787/afbc8c1d-en
  • IEA. (2022b). Renewables 2022, IEA. 158. Retrieved from https://www.iea.org/reports/renewables-2022
  • IEA. (2022c). World Energy Investment 2022. 227.
  • IEA. (2023). Snapshot of Global PV Markets 2023. Www.Iea-Pvps.Org, 1–16. Retrieved from http://www.iea-pvps.org/fileadmin/dam/public/report/technical/PVPS_report_-_A_Snapshot_of_Global_PV_-_1992-2014.pdf
  • International Renewable Energy Agency (IRENA). (2022). Solar energy Overview. Retrieved December 28, 2022, from https://www.irena.org/Energy-Transition/Technology/Solar-energy
  • IRENA and IEA. (2016). End-Of-Life Management: Solar Photovoltaic Panels. In International Renewable Energy Agency and the International Energy Agency Photovoltaic Power Systems. Retrieved from http://www.irena.org/DocumentDownloads/Publications/IRENA_IEAPVPS_End-of-
  • Kim, Y., & Lee, J. (2012). Dissolution of ethylene vinyl acetate in crystalline silicon PV modules using ultrasonic irradiation and organic solvent. Solar Energy Materials and Solar Cells, 98 (x), 317–322. doi: https://doi.org/10.1016/j.solmat.2011.11.022
  • Latunussa, C. E. L., Ardente, F., Andrea, G., & Mancini, L. (2016). Solar Energy Materials & Solar Cells Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells, 156, 101–111. doi: https://doi.org/10.1016/j.solmat.2016.03.020
  • Latunussa, C. E. L., Ardente, F., Blengini, G. A., & Mancini, L. (2016). Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells, 156, 101–111. doi: https://doi.org/10.1016/j.solmat.2016.03.020
  • Li, X., Liu, H., You, J., Diao, H., Zhao, L., & Wang, W. (2022). Back EVA recycling from c-Si photovoltaic module without damaging solar cell via laser irradiation followed by mechanical peeling. Waste Management, 137 (November 2021), 312–318. doi: https://doi.org/10.1016/j.wasman.2021.11.024
  • Maani, T., Celik, I., Heben, M. J., Ellingson, R. J., & Apul, D. (2020). Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels. Science of the Total Environment, 735, 138827. doi: https://doi.org/10.1016/j.scitotenv.2020.138827
  • NREL. (2021a). Best Practices at the End of the Photovoltaic System Performance Period Best Practices at the End of the Photovoltaic System Performance Period. (February).
  • NREL. (2021b). What It Takes To Realize a Circular Economy for Solar Photovoltaic System Materials. 4–7. Retrieved from https://www.nrel.gov/news/program/2021/what-it-takes-to-realize-a-circular-economy-for-solar-photovoltaic-system-materials.html
  • Peplow, M. (2020). Solar panels face recycling challenge. C&EN Global Enterprise, 5 (7), 502–510. doi: https://doi.org/10.1038/s41560-020-0645-2
  • Pinson, P., Han, L., & Kazempour, J. (2022). Regression markets and application to energy forecasting. In Top (Vol. 30). doi: https://doi.org/10.1007/s11750-022-00631-7
  • Sharma, A., Pandey, S., & Kolhe, M. (2019). Global review of policies & guidelines for recycling of solar pv modules. International Journal of Smart Grid and Clean Energy, 8 (5), 597–610. doi: https://doi.org/10.12720/sgce.8.5.597-610
  • Tao, M., Fthenakis, V., Ebin, B., Steenari, B.-M., Butler, E., Sinha, P., … Simon, E. S. (2020). Major challenges and opportunities in silicon solar module recycling. Progress in Photovoltaics: Research and Applications, 28 (10), 1077–1088. doi: https://doi.org/10.1002/pip.3316
  • TEIAS. (2019). Türkiye Kurulu Güç Raporu (Aralık 2019). 1. Retrieved from https://www.teias.gov.tr/tr-TR/kurulu-guc-raporlari
  • TEIAS. (2022). Installed capacity report of Turkey. 2022.
  • TEIAS (Turkish Electricity Transmission Corporation). (2023). Yük Tevzi Bilgi Sistemi. Türkiye Bilimler Akademisi [TÜBA]. (2018). Güneş Enerjisi Teknolojileri Raporu.
  • Wang, R., Song, E., Zhang, C., Zhuang, X., Ma, E., Bai, J., … Wang, J. (2019). Pyrolysis-based separation mechanism for waste crystalline silicon photovoltaic modules by a two-stage heating treatment. RSC Advances, 9(32), 18115–18123. doi: https://doi.org/10.1039/c9ra03582f