METALİK PLAKALARIN HİPER HIZLI ÇARPMA DAVRANIŞI ÜZERİNE SAYISAL BİR ÇALIŞMA

Hiper hızlı çarpma, mikro meteoroidlerin uzay yapılarına çarpmasından dolayı iyi bilinen bir sorundur. Bu nedenle, malzemelerin hiper hızlı çarpma davranışı araştırmacılar için ilginç bir konudur. Bu gerçeğe rağmen, deneysel çalışmalar, hiper hızlı çarpma sistemleri kurmak için yüksek maliyetler gerektirir. Bundan dolayı sayısal yöntemler, hiper hızlı çarpma olaylarını anlamak için maliyet açısından etkin bir şekilde ön plana çıkmaktadır. Bu çalışmada, metal plakalar üzerindeki hiper hızlı çarpmaları simüle etmek için sayısal bir model oluşturulmuştur. Model, önceki bir makalenin deneysel sonuçları kullanılarak doğrulanmıştır. Çarpma koşullarında iki farklı faktör incelenmiştir. Birincisi hedef plaka malzemesi, diğeri ise çarpma açısıdır. Uzay yapı uygulamalarından dolayı plaka malzemesi olarak alüminyum alaşımı Al 6061-T6 ve A36 çeliği kullanılmıştır. Simülasyonlarda çarpma açısı 30°, 60° ve 90° olarak değiştirilmiştir. Sonuçlara göre, levha malzemesi özellikle dik çarpmalarda farklı bir parçalanmaya yol açmaktadır. Çarpma açısı etkisi ise plakalardaki hasar boyutunda görülmektedir. Hedef plakalardaki çarpma deliği, çarpma açısı azaldığında daireselden eliptik forma dönüşmektedir.

A NumerIcal Study on Hyper VelocIty Impact BehavIor of MetallIc Plates

Hyper velocity impact is a well-known problem due to micro meteoroid coincidence with space structures. Hence, hyper velocity impact behavior of materials is an interesting topic for researchers. Despite this fact, experimental studies require heavy costs to install hyper velocity impact systems. For this reason, numerical efforts come into prominence to understand hyper velocity impact events in a cost-effective way. In this work, a numerical model was built to simulate hyper velocity impacts on metallic plates. The model was validated by using the experimental results of a previous paper. Two different factors were investigated in impact conditions. The first one was target plate material and the other one was impact angle. Aluminum alloy Al 6061-T6 and A36 steel were used as the plate material due to their applications in space structure components. Impact angle was varied as 30°, 60° and 90° in the simulations. According to the results, plate material leads to a variation in fragmentation especially in normal impacts. Impact angle effect is observed in damage size on plates. Impact hole on target plates turn from circular to elliptical form by reducing impact angle.

___

  • Allende, Maria I., Joshua E. Miller, B. Alan Davis, Eric L. Christiansen, Michael D. Lepech, and David J. Loftus. 2020. “Prediction of Micrometeoroid Damage to Lunar Construction Materials Using Numerical Modeling of Hypervelocity Impact Events.” International Journal of Impact Engineering 138:103499. doi:https://doi.org/10.1016/j.ijimpeng.2020.103499.
  • Burchell, Mark J., and Neil G. Mackay. 1998. “Crater Ellipticity in Hypervelocity Impacts on Metals.” Journal of Geophysical Research: Planets 103(E10):22761–74. doi:https://doi.org/10.1029/98JE02143.
  • Chhabildas, L. C., Lee Davison, and Y. Horie, eds. 2005. High-Pressure Shock Compression of Solids VIII: The Science and Technology of High-Velocity Impact. New York: Springer.
  • Christiansen, Eric, and Tracy Calhoun. 2017. Hypervelocity Impact Technology Team. FS-2017-03-003-JSC. Houston, Texas, USA: National Aeronautics and Space Administration (NASA).
  • Fortov, V. E., V. V. Kim, I. V. Lomonosov, A. V. Matveichev, and A. V. Ostrik. 2006. “Numerical Modeling of Hypervelocity Impacts.” International Journal of Impact Engineering 33(1–12):244–53. doi:https://doi.org/10.1016/j.ijimpeng.2006.09.031.
  • Gu, Y. T. 2005. “Meshfree Methods and Their Comparisons.” International Journal of Computational Methods 02(04):477–515. doi:https://doi.org/10.1142/S0219876205000673.
  • Gürgen, Selim. 2018a. “A Numerical Investigation on Oblique Projectile Impact Behavior of AA5083-H116 Plates.” Journal of Polytechnic. doi:https://doi.org/10.2339/politeknik.403994.
  • Gürgen, Selim. 2018b. “The Influence of Boundary Condition on the Impact Behavior of High Performance Fabrics.” Advanced Engineering Forum 28:47–54. doi:https://doi.org/10.4028/www.scientific.net/AEF.28.47.
  • Gürgen, Selim. 2019. “Impact Behavior of Preloaded Aluminum Plates at Oblique Conditions.” Arabian Journal for Science and Engineering 44(2):1649–56. doi:https://doi.org/10.1007/s13369-018-3636-x.
  • Gürgen, Selim. 2020. “Numerical Modeling of Fabrics Treated with Multi-Phase Shear Thickening Fluids under High Velocity Impacts.” Thin-Walled Structures 148:106573. doi:https://doi.org/10.1016/j.tws.2019.106573.
  • Jeyakumar, M., and T. Christopher. 2013. “Influence of Residual Stresses on Failure Pressure of Cylindrical Pressure Vessels.” Chinese Journal of Aeronautics 26(6):1415–21. doi:https://doi.org/10.1016/j.cja.2013.07.025.
  • Lacome, J. L. 2006. “Smooth Particle Hydrodynamic (SPH): A New Feature in Ls-Dyna.” Dynalis Aeropole 7:29–34.
  • Ma, S., X. Zhang, and X. M. Qiu. 2009. “Comparison Study of MPM and SPH in Modeling Hypervelocity Impact Problems.” International Journal of Impact Engineering 36(2):272–82. doi:https://doi.org/10.1016/j.ijimpeng.2008.07.001.
  • Merzhievskii, L. A., and V. M. Titov. 1976. “Perforation of Plates through High-Velogity Impact.” Journal of Applied Mechanics and Technical Physics 16(5):757–64. doi:https://doi.org/10.1007/BF00854086.
  • Moritoh, Tatsumi, Shohei Matsuoka, Toshiyuki Ogura, Kazutaka G. Nakamura, Ken-ichi Kondo, Masahide Katayama, and Masatake Yoshida. 2003. “Dynamic Failure of Steel under Hypervelocity Impact of Polycarbonate up to 9 Km/s.” Journal of Applied Physics 93(10):5983–88. doi:https://doi.org/10.1063/1.1569979.
  • O’Toole, Brendan, Mohamed Trabia, Robert Hixson, Shawoon K. Roy, Michael Pena, Steven Becker, Edward Daykin, Eric Machorro, Richard Jennings, and Melissa Matthes. 2015. “Modeling Plastic Deformation of Steel Plates in Hypervelocity Impact Experiments.” Procedia Engineering 103:458–65. doi:https://doi.org/10.1016/j.proeng.2015.04.060.
  • Piekutowski, Andrew J. 1997. “Effects of Scale on Debris Cloud Properties.” International Journal of Impact Engineering 20(6–10):639–50. doi:https://doi.org/10.1016/S0734-743X(97)87451-9.
  • Rosenberg, Zvi, and Erez Dekel. 2012. Terminal Ballistics. Berlin Heidelberg: Springer.
  • Sheikhi, Mohammad Rauf, Behrang Shamsadinlo, Özgür Ünver, and Selim Gürgen. 2021. “Finite Element Analysis of Different Material Models for Polyurethane Elastomer Using Estimation Data Sets.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 43(12):554. doi:https://doi.org/10.1007/s40430-021-03279-9.
  • Silnikov, M. V., I. V. Guk, A. F. Nechunaev, and N. N. Smirnov. 2018. “Numerical Simulation of Hypervelocity Impact Problem for Spacecraft Shielding Elements.” Acta Astronautica 150:56–62. doi:https://doi.org/10.1016/j.actaastro.2017.08.030.
  • Slimane, Sid Ahmed, Abdelkader Slimane, Ahmed Guelailia, Abdelmadjid Boudjemai, Said Kebdani, Amine Smahat, and Dahmane Mouloud. 2021. “Hypervelocity Impact on Honeycomb Structure Reinforced with Bi-Layer Ceramic/Aluminum Facesheets Used for Spacecraft Shielding.” Mechanics of Advanced Materials and Structures 1–19. doi:https://doi.org/10.1080/15376494.2021.1931991.
  • Wen, Ken, Xiao-wei Chen, and Yong-gang Lu. 2021. “Research and Development on Hypervelocity Impact Protection Using Whipple Shield: An Overview.” Defence Technology 17(6):1864–86. doi:https://doi.org/10.1016/j.dt.2020.11.005.
  • Wilkins, Mark L. 1999. Computer Simulation of Dynamic Phenomena. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Xu, Mingyang, Weidong Song, Cheng Wang, Pei Wang, Jianli Shao, and Enling Tang. 2021. “Theoretical and Experimental Study on the Hypervelocity Impact Induced Microjet from the Grooved Metal Surface.” International Journal of Impact Engineering 156:103944. doi:https://doi.org/10.1016/j.ijimpeng.2021.103944.
  • Zhang, Xiaotian, Ruiqing Wang, Jiaxin Liu, Xiaogang Li, and Guanghui Jia. 2018. “A Numerical Method for the Ballistic Performance Prediction of the Sandwiched Open Cell Aluminum Foam under Hypervelocity Impact.” Aerospace Science and Technology 75:254–60. doi:https://doi.org/10.1016/j.ast.2017.12.034.