Eklemeli İmalatla Üretilen İşlevsel Olarak Derecelendirilmiş Metal Yapılar

İşlevsel olarak derecelendirilmiş yapılar (İDY), konvansiyonel malzeme işleme yöntemleri ile elde edilemeyen, aynı parça içerisinde birden çok fiziksel özelliğin elde edilebilmesi için mikroyapı, gözeneklilik veya kimyasal kompozisyonun, malzemenin hacmi boyunca kademeli olarak değiştiği bir malzeme çeşididir. Metal İDY, farklı konvansiyonel üretim yöntemleri ile üretilebilmektedir fakat Eklemeli İmalat (Eİ) konusunda son zamanlarda elde edilen gelişmeler, karmaşık şekillerin üretilebilme ihtimali, düşük prototipleme maliyetleri, asgari kalıp üretimi, yüksek hassasiyet ve işlemin yüksek tekrar edilebilme özelliklerinden dolayı, farklı türlerde İDY’lerin üretilebilmesine olanak sağlamaktadır. Bu çalışmada, Eİ ile üretilen metal İDY’ler konusunda son yıllarda elde edilen gelişmelere odaklanılmıştır. Eİ ile üretilen metal İDY’lerin detaylı literatür taraması ve farklı endüstrilerde kullanımı bu çalışmada anlatılacaktır.

Metal Additive Manufactured Functionally Graded Structures

Functionally graded structure (FGS) is a type of material where microstructure, porosity or chemical composition is gradually changing across the volume of the material so that multiple physical properties not possible within the same part made by conventional material processing techniques can be achieved. Metal FGSs can be produced with different conventional manufacturing processes but recent advances in Additive Manufacturing (AM) enable the production of different type of FGSs with the possibility of production of complex shapes, low cost for prototyping, minimum tooling, high accuracy and high repeatability. The present paper focuses on the recent advances in metal AM of FGSs. A detailed review of researches on metal AM of FGSs and their usage in different industries will be presented in this paper.

___

  • Mahamood, R. M., Akinlabi, E. T. 2017. Functionally graded materials, ISBN: 978-3-319-85236-2 Springer International Publishing, Switzerland.
  • Sha, Y., Jiani, L., Haoyu, C., Ritchie, R. O., Jun, X. 2018. “Design and strengthening mechanisms in hierarchical architected materials processed using additive manufacturing”. International Journal of Mechanical Sciences, vol. 149, p. 150-163. https://doi.org/10.1016/j.ijmecsci.2018.09.038.
  • Stoner, B., Bartolai, J., Kaweesa, D. V., Meisel, N. A., Simpson, T. W. 2018. “Achieving functionally graded material composition through bicontinuous mesostructural geometry in material extrusion additive manufacturing”, JOM, vol. 70, p. 413-418. https://doi.org/10.1007/s11837-017-2669-z.
  • Popovich, V. A., Borisov, E. V., Popovich, A. A., Sufiiarov, V. S., Masaylo, D. V., Alzina, L. 2017. “Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties”, Materials & Design, vol. 114, p. 441-449. https://doi.org/10.1016/j.matdes.2016.10.075.
  • Naebe, M., Shirvanimoghaddam, K. 2016. “Functionally graded materials: A review of fabrication and properties”, Applied Materials Today, vol. 5, p. 223-245. https://doi.org/10.1016/j.apmt.2016.10.001.
  • Popoola, P., Farotade, G., Fatoba, O., Popoola, O. 2016. “Laser engineering net shaping method in the area of development of functionally graded materials (FGSs) for aero engine applications - a review”, https://www.intechopen.com/books/fiber-laser/laser-engineering-net-shaping-method-in-the-area-of-development-of-functionally-graded-materials-fgm, son erişim tarihi: 21.08.2020.
  • Avila, J. D., Bose, S., Bandyopadhyay, A. 2018. Additive manufacturing of titanium and titanium alloys for biomedical applications, Titanium in Medical and Dental Applications, Woodhead Publishing Series in Biomaterials, ISBN: 978-3-319-91713-9, Springer International Publishing, Switzerland.
  • Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C. 2016. “Additive manufacturing of metals”, Acta Materialia, vol. 117, p. 371-392. https://doi.org/10.1016/j.actamat.2016.07.019.
  • Flores, I., Kretzschmar, N., Azman, A. H., Chekurov, S., Pedersen, D. B., Chaudhuri, A. 2020. “Implications of lattice structures on economics and productivity of metal powder bed fusion”, Additive Manufacturing, vol. 31, p. 100947. https://doi.org/10.1016/j.addma.2019.100947.
  • Kieback, B., Neubrand, A., Riedel, H. 2003. “Processing techniques for functionally graded materials”, Materials Science and Engineering A, vol. 362, p. 81-105. https://doi.org/10.1016/S0921-5093(03)00578-1.
  • Barui, S., Chatterjee, S., Mandal, S., Kumar, A., Basu, B. 2017. “Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis”, Materials Science and Engineering: C, vol. 70, p. 812-823. https://doi.org/10.1016/j.msec.2016.09.040.
  • El-Galy, I. M., Saleh, B. I., Ahmed, M. H. 2019. “Functionally graded materials classifications and development trends from industrial point of view”, SN Applies Sciences, vol. 1, p. 1378. https://doi.org/10.1007/s42452-019-1413-4.
  • Chen, Y., Liou, F. 2018. “Additive manufacturing of metal functionally graded materials: a review”, Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, The University of Texas at Austin, Austin, Texas, USA.
  • Loh, G. H., Pei, E., Harrison, D., Monzon, M. D. 2018. “An overview of functionally graded additive manufacturing”, Additive Manufacturing, vol. 23, p. 34-44. https://doi.org/10.1016/j.addma.2018.06.023.
  • Qu, H. P., Li, P., Zhang, S. Q., Li, A., Wang, H. M. 2010. “Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material”, Materials and Design, vol. 31, p. 574-582. https://doi.org/10.1016/j.matdes.2009.07.004.
  • Tan, C., Zhou, K., Kuang, T. 2019. “Selective laser melting of tungsten-copper functionally graded material”, Materials Letters, vol. 237, p. 328-331. https://doi.org/10.1016/j.matlet.2018.11.127.
  • Carroll, B. E., Otis, R. A., Borgonia, J. P., Suh, J., Dillon, R. P., Shapiro, A. A., Hofmann, D. C., Liu, Z-K., Beese, A. M. 2016. “Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling”, Acta Materialia, vol. 108, p. 46-54. https://doi.org/10.1016/j.actamat.2016.02.019.
  • Shishkovsky, I., Missemer, F., Smurov, I. 2012. “Direct metal deposition of functionalgraded structures in Ti–Al system”, Physics Procedia, vol. 39, p. 382-391. https://doi.org/10.1016/j.phpro.2012.10.052.
  • Reichardt, A., Shapiro, A. A., Otis, R., Dillon, R. P., Borgonia, J. P., McEnerney, B. W., Hosemann, P., Beese, A. M. 2020. “Advances in additive manufacturing of metal-based functionally graded materials”, International Materials Reviews. https://doi.org/10.1080/09506608.2019.1709354.
  • Mahmoud, D., Elbestawi, M. A. 2017. “Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review”, Journal of Manufacturing and Materials Processing, vol. 1, no. 2, p. 13. https://doi.org/10.3390/jmmp1020013.
  • Surmeneva, M. A., Surmenev, R. A., Chudinova, E. A., Koptioug, A., Tkachev, M. S., Gorodzha, S. N., Rännar, L-E. 2017. “Fabrication of multiple-layered gradient cellular metal scaffold via electron beam melting for segmental bone reconstruction”, Materials & Design, vol. 133, p. 195-204. https://doi.org/10.1016/j.matdes.2017.07.059.
  • Zhang, C., Chen, F., Huang, Z., Jia, M., Chen, G., Ye, Y., Lin, Y., Liu, W., Chen, B., Shen, Q., Zhang, L., Lavernia, E. J. 2019. “Additive manufacturing of functionally graded materials: A review”, Materials Science and Engineering: A, vol. 764, p. 138209. https://doi.org/10.1016/j.msea.2019.138209.
  • Fousová, M., Vojtěch, D., Kubásek, J., Jablonská, E., Fojt, J. 2017. “Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process”, Journal of the Mechanical Behavior of Biomedical Materials, vol. 69, p. 368-376. https://doi.org/10.1016/j.jmbbm.2017.01.043.
  • Mahbod, M., Asgari, M. 2019. “Elastic and plastic characterization of a new developed additively manufactured functionally graded porous lattice structure: Analytical and numerical models”, InternationIal Journal of Mechanical Sciences, vol. 155, p. 248-266. https://doi.org/10.1016/j.ijmecsci.2019.02.041.
  • Sudarmadji, N., Tan, J. Y., Leong, K. F., Chua, C. K., Loh, Y. T. 2011. “Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedrals for functionally graded scaffolds”, Acta Biomaterialia, vol. 7, no. 2, p. 530-537. https://doi.org/10.1016/j.actbio.2010.09.024.
  • Hazlehurst, K. B., Wang, C. J., Stanford, M. 2014. “An investigation into the flexural characteristics of functionally graded cobalt-chrome femoral stems manufactured using selective-laser melting”, Materials and Design, vol. 60, p. 177-183. https://doi.org/10.1016/j.matdes.2014.03.068.
  • Trainia, T., Mangano, C., Sammons, R. L., Mangano, F., Macchib, A., Piattelli, A. 2008. “Direct laser-metal sintering as a new approach to fabrication of an isoelastic functionally graded material for the manufacture of porous titanium dental implants”, Dental Materials, vol. 24, no. 11, p. 1525–1533. https://doi.org/10.1016/j.dental.2008.03.029.
  • Hou, W., Yang, X., Zhang, W., Xia, Y. 2018. “Design of energy-dissipating structure with functionally graded auxetic cellular material”, International Journal of Crashworthiness, vol. 23, no. 4, p. 366-376. https://doi.org/10.1080/13588265.2017.1328764.
  • Xiao, L., Song, W. 2018. “Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: Experiments”, International Journal of Impact Engineering, vol. 111, p. 255-272. https://doi.org/10.1016/j.ijimpeng.2017.09.018.
  • Choy, S. Y., Sun, C.-N., Leong, K. F., Wei, J. 2017. “Compressive properties of functionally graded lattice structures manufactured by selective laser melting”, Materials & Design, vol. 131, p. 112-120. https://doi.org/10.1016/j.matdes.2017.06.006.
  • Maskery, I., Aboulkhair, N., Aremu, A., Tuck, C., Ashcroft, I., Wildman, R. D., Hague, R. J. M. 2016. “A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting”, Materials Science and Engineering: A, vol. 670, p. 264-274. https://doi.org/10.1016/j.msea.2016.06.013.
  • Al-Saedi, D. S. J., Masood, S. H., Faizan-Ur-Rab, M., Alomarah, A., Ponnusamy, P. 2018. “Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM”, Materials & Design, vol. 144, p. 32-44. https://doi.org/10.1016/j.matdes.2018.01.059.
  • Limmahakhun, S., Oloyede, A., Sitthiseripratip, K., Xiao, Y., Yan, C. 2017. “Stiffness and strength tailoring of cobalt chromium graded cellular structures for stress-shielding reduction”, Materials & Design, vol. 114, p. 633-641. https://doi.org/10.1016/j.matdes.2016.11.090.
  • Zhang, X.-Y., Fang, G., Leeflang, S., Zadpoor, A. A., Zhou, J. 2018. “Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials”, Acta Biomaterialia, vol. 84, p. 437-452. https://doi.org/10.1016/j.actbio.2018.12.013.
  • Onal, E., Frith, J. E., Jurg, M., Wu, X., Molotnikov, A. 2018. “Mechanical properties and in vitro behavior of additively manufactured and functionally graded Ti6Al4V porous scaffolds”, Metals, vol. 8, p. 200. https://doi.org/10.3390/met8040200.
  • Zhao, S., Li, S., Wang, S., Hou, W., Li, Y., Zhang, L., Hao, Y., Yang, R., Misra, R. D. K., Murr, L. E. 2018. “Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting”, Acta Materialia, vol. 150, p. 1-15. https://doi.org/10.1016/j.actamat.2018.02.060.
  • Maskery, I., Hussey, A., Panesar, A., Aremu, A., Tuck, C., Ashcroft, I., Hague, R. 2016. “An investigation into reinforced and functionally graded lattice structures”, Journal of Cellular Plastics, vol. 53, no. 2, p. 151-165. https://doi.org/10.1177/0021955X16639035.
  • Han, C., Li, Y., Wang, Q., Wen, S., Wei, Q., Yan, C., Hao, L., Liu, J., Shi, Y. 2018. “Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants”, Journal of the Mechanical Behavior of Biomedical Materials, vol. 80, p. 119-127. https://doi.org/10.1016/j.jmbbm.2018.01.013.
  • Beal, V. E., Erasenthiran, P., Hopkinson, N., Dickens, P., Ahrens, C. H. 2006. “The effect of scanning strategy on laser fusion of functionally graded H13/Cu materials”, The International Journal of Advanced Manufacturing Technology, vol. 30, no. 9-10, p. 844-852. https://doi.org/10.1007/s00170-005-0130-x.
  • Parthasarathy, J., Starly, B., Raman, S. 2011. “A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications”, Journal of Manufacturing Processes, vol. 13, no. 2, p. 160-170. https://doi.org/10.1016/j.jmapro.2011.01.004.
  • Liu, F., Mao, Z., Zhang, P., Zhang, D. Z., Jiang, J., Ma, Z. 2018. “Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties”, Materials & Design, vol. 160, p. 849-860. https://doi.org/10.1016/j.matdes.2018.09.053.
  • Zhang, M., Yang, Y., Wang, D., Xiao, Z., Song, C., Weng, C. 2018. “Effect of heat treatment on the microstructure and mechanical properties of Ti6Al4V gradient structures manufactured by selective laser melting”, Materials Science and Engineering A, vol. 736, p. 288- 297. https://doi.org/10.1016/j.msea.2018.08.084.
  • Wei, C., Sun, Z., Chen, Q., Liu, Z., Li, L. 2019. “Additive manufacturing of horizontal and 3d functionally graded 316L/Cu10Sn components via multiple material selective laser melting”, Journal of Manufacturing Science and Engineering, vol. 141, no. 8, p. 081014. https://doi.org/10.1115/1.4043983.
  • Bendsøe, M. P. 1989. “Optimal shape design as a material distribution problem”, Structural Optimization, vol. 1, p. 193-202. https://doi.org/10.1007/BF01650949.
  • Tang, Y., Kurtz, A., Zhao, F. Y. 2015. “Bidirectional Evolutionary Structural Optimization (BESO) based design method for lattice structure to be fabricated by additive manufacturing”, Computer-Aided Design, vol. 69, p. 91-101. https://doi.org/10.1016/j.cad.2015.06.001.
  • Liu, J., Yu, H., To, A. C. 2018. “Porous structure design through Blinn transformation-based level set method”, Structural and Multidisciplinary Optimization, vol. 57, p. 849-864. https://doi.org/10.1007/s00158-017-1786-1.
  • Paulino, G. H., Silva, E. C. N. 2005. “Design of functionally graded structures using topology optimization”, Materials Science Forum, vol. 492-493, p. 435-440. https://doi.org/10.4028/www.scientific.net/MSF.492-493.435.
  • Zhang, P., Toman, J., Yu, Y., Biyikli, E., Kirca, M., Chmielus, M., To, A. C. 2014. “Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation”, Journal of Manufacturing Science and Engineering, vol. 137, no. 2, p. 021004. https://doi.org/10.1115/1.4028724.
  • Daynes, S., Feih, S., Lu, W. F., Wei, J. 2017. “Optimisation of functionally graded lattice structures using isostatic lines”, Materials & Design, vol. 127, p. 215-223. https://doi.org/10.1016/j.matdes.2017.04.082.
  • Cheng, L., Zhang, P., Biyikli, E., Jiaxi, B., Robbins, J., Albert, T. 2017. “Efficient design optimization of variable-density cellular structures for additive manufacturing: Theory and experimental validation”, Rapid Prototyping Journal, vol. 23, no. 4, p. 660-677. https://doi.org/10.1108/RPJ-04-2016-0069.
  • Jin, X., Li, G.-X., Zhang, M. 2017. “Design and optimization of nonuniform cellular structures”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 232, no. 7, p. 1280-1293. https://doi.org/10.1177/0954406217704677.
  • Liu, C., Du, Z., Zhang, W., Zhu, Y., Guo, X. 2017. “Additive manufacturing-oriented design of graded lattice structures through explicit topology optimization”, Journal of Applied Mechanics, vol. 84, no. 8, p. 081008. https://doi.org/10.1115/1.4036941.
  • Panesar, A., Abdi, M., Hickman, D., Ashcroft, I. 2018. “Strategies for functionally graded lattice structures derived using topology optimisation for Additive Manufacturing”, Additive Manufacturing, vol. 19, p. 81-94. https://doi.org/10.1016/j.addma.2017.11.008.
  • Li, D., Dai, N., Tang, Y., Dong, G., Zhao, Y. F. 2019. “Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes”, Journal of Mechanical Design, vol. 141, no. 7, p. 071402. https://doi.org/10.1115/1.4042617.
  • Yi, B., Zhou, Y., Yoon, G. H., Saitou, K. 2019. “Topology optimization of functionally-graded lattice structures with buckling constraints”, Computer Methods in Applied Mechanics and Engineering, vol. 354, p. 593-619. https://doi.org/10.1016/j.cma.2019.05.055.
  • Cheng, L., Bai, J., To, A. C. 2019. “Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints”, Computer Methods in Applied Mechanics and Engineering, vol. 344, p. 334-359. https://doi.org/10.1016/j.cma.2018.10.010.
  • Goel, A., Anand, S. 2019. “Design of functionally graded lattice structures using B-splines for additive manufacturing”, Procedia Manufacturing, vol. 34, p. 655-665. https://doi.org/10.1016/j.promfg.2019.06.193.
  • Li, D., Liao, W., Dai, N., Dong, G., Tang, Y., Xie, Y. M. 2018. “Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing”, Computer-Aided Design, vol. 104, p. 87-99. https://doi.org/10.1016/j.cad.2018.06.003.
  • Bhavar, V., Kattire, P., Thakare, S., Patil, S., Singh, R. K. P. 2017. “A review on functionally gradient materials (FGSs) and their applications, 2nd International Conference on Advanced Materials Research and Manufacturing Technologies (AMRMT 2017), Phuket, Thailand.
  • Dumas, M., Terriault, P., Brailovski, V. 2017. “Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials”, Materials & Design, vol. 121, p. 383-392. https://doi.org/10.1016/j.matdes.2017.02.021.