Çift Ağlı Hidrojellerin Basma Yükü Altında Gerilme Gevşemesi Davranışı

Akrilamid (AAM) zayıf mekanik özellikleri dolayı, biyodoku iskeleleri ve yumuşak doku aktüatörleri gibi biyomedikal uygulamalarda istenilen özellikleri sergileyememektedir. Bu nedenle Aljinat (ALG) kullanılarak çift ağa sahip hidrojel şeklinde kullanılmaktadır. Bu çalışmada AAM-ALG hidrojelindeki kovalent çapraz bağlayıcı (BIS) ve iyonik çapraz bağlayıcı (CaCl2) miktarının mekanik özellikler etkisini araştırmak üzere beş farklı hidrojel üretilmiştir. Silindirik basma numuneleri %20 gerinim seviyesine kadar yüklenmiş, daha sonra 300 saniye süre ile gevşeme testi yapılmıştır. Sonuçlar iyonik çarpaz bağlayıcı miktarının mekanik özelliklere etkisinin çok güçlü olduğunu göstermiştir. Kovalent çapraz bağlayıcı miktarının ise belli bir kritik seviyenin üzerinde etkili olduğu gözlemlenmiştir.

Stress Relaxation Behavior of Double Network Hydrogels under Compressive Loading

Because of moderate stretchable properties of acrylamide (AAM), it is used as double network hydrogel with alginates (AAL). We prepared AAM-ALG hydrogels containing various amount of crosslinker (BIS) and concentration of calcium chloride (CaCl2) solution. A series of uniaxial compression loading tests were performed on five different AAM-ALG specimens. The specimens are loaded up to 20% strain and hold at the same strain level for 300 seconds. Concentration of CaCl2 solution dependency is clear; increasing molarity of CaCl2 yields an increase in the stress level. On the other hand, effect of amount of BIS is not dominant on mechanical properties.

___

  • Buwalda SJ, Boere KWM, Dijkstra PJ, et al. (2014) Hydrogels in a historical perspective: From simple networks to smart materials. Journal of Controlled Release. DOI: 10.1016/j.jconrel.2014.03.052.
  • Darnell MC, Sun JY, Mehta M, et al. 2013. Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34(33). DOI: 10.1016/j.biomaterials.2013.06.061.
  • Donati I and Paoletti S. 2009. Material Properties of Alginates. DOI: 10.1007/978-3-540-92679-5_1.
  • Drozdov AD and Sommer-Larsen P. 2016. Swelling of thermo-responsive gels under hydrostatic pressure. Meccanica 51(6). DOI: 10.1007/s11012-015-0300-3.
  • Fei X, Lin Jiangli, Wang J, et al. 2012. Synthesis and mechanical strength of a novel double network nanocomposite hydrogel with core-shell structure. Polymers for Advanced Technologies 23(4). DOI: 10.1002/pat.1948.
  • Golafshan N, Kharaziha M and Fathi M. 2017. Tough and conductive hybrid graphene-PVA: Alginate fibrous scaffolds for engineering neural construct. Carbon 111. DOI: 10.1016/j.carbon.2016.10.042.
  • Gong JP, Katsuyama Y, Kurokawa T, et al. 2003. Double-network hydrogels with extremely high mechanical strength. Advanced Materials 15(14). DOI: 10.1002/adma.200304907.
  • Gorin PAJ and Spencer JFT. 1966. Exocellular Alginic Acid From Azotobacter Vinelandii. Canadian Journal of Chemistry 44(9). DOI: 10.1139/v66-147.
  • Govan JRW, Fyfe JAM and Jarman TR. 1981. Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendocina. Journal of General Microbiology 125(1). DOI: 10.1099/00221287-125-1-217.
  • Haraguchi, K. 2007. Nanocomposite hydrogels. Current Opinion in Solid State and Materials Science. DOI: 10.1016/j.cossms.2008.05.001.
  • Haraguchi, K, Farnworth, R., Ohbayashi, A, et al. 2003. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules. DOI: 10.1021/ma034366i.
  • Hoffman. AS. 2012. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews. DOI: 10.1016/j.addr.2012.09.010.
  • Ito, K. 2007. Novel cross-linking concept of polymer network: Synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polymer Journal 39(6). DOI: 10.1295/polymj.PJ2006239.
  • Morelle, XP, Illeperuma, WR, Tian, K, et al. 2018. Highly Stretchable and Tough Hydrogels below Water Freezing Temperature. Advanced Materials 30(35). DOI: 10.1002/adma.201801541.
  • Okumura Y and Ito K . 2001 The polyrotaxane gel: A topological gel by figure-of-eight cross-links. Advanced Materials 13(7). DOI: 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T.
  • Oyen ML 2014. Mechanical characterisation of hydrogel materials. International Materials Reviews 59(1). DOI: 10.1179/1743280413Y.0000000022.
  • Pensalfini M, Ehret AE, Stüdeli S, et al. 2017. Factors Affecting The Mechanical Behavior Of Collagen Hydrogels For Skin Tissue Engineering. Journal of the Mechanical Behavior of Biomedical Materials 69. DOI: 10.1016/j.jmbbm.2016.12.004.
  • Qiao Z, Parks J, Choi P, et al. 2019. Applications of Highly Stretchable and Tough Hydrogels. Polymers 11(11). DOI: 10.3390/polym11111773.
  • Qiao Z, Cao M, Michels K, et al. 2020. Design and Fabrication of Highly Stretchable and Tough Hydrogels. Polymer Reviews. DOI: 10.1080/15583724.2019.1691590.
  • Rakhshaei, R., Namazi, H. 2017. A Potential Bioactive Wound Dressing Based on Carboxymethyl Cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Materials Science and Engineering C 73. DOI: 10.1016/j.msec.2016.12.097.
  • Rathjen, C.M., Park CH, Goodrich PR, et al. 1995. The Effect of Preparation Temperature On Some Properties of a Temperature-Sensitive Hydrogel. Polymer Gels and Networks 3(2). DOI: 10.1016/0966-7822(94)00030-B.
  • Rehm, BHA 2015. Alginates: Biology and Applications: Biology and Applications. Microbiology Monographs .
  • Shams Es-haghi S, Offenbach I, Debnath D, et al. 2017. Mechano-Optical Behavior of Loosely Crosslinked Double-Network Hydrogels: Modeling and Real-Time Birefringence Measurement During Uniaxial Extension. Polymer (United Kingdom) 115. Elsevier Ltd: 239–245. DOI: 10.1016/j.polymer.2017.03.047.
  • Sugawara, E., Nikaido, H. 2009. Alginates: Biology and Applications. Antimicrobial agents and chemotherapy 13(12). DOI: 10.1007/978-3-540-92679-5.
  • Sun, J.Y., Zhao, X., Illeperuma, WRK, et al. 2012. Highly Stretchable and Tough Hydrogels. Nature 489(7414). DOI: 10.1038/nature11409.
  • Suzuki, A, Sanda, K., Omori, Y. 1997. Phase Transition in Strongly Stretched Polymer gels. Journal of Chemical Physics 107(13). DOI: 10.1063/1.474880.
  • Treenate P and Monvisade P. 2017. In vitro drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug. International Journal of Biological Macromolecules 99. DOI: 10.1016/j.ijbiomac.2017.02.061.
  • Varaprasad K, Raghavendra GM, Jayaramudu T, et al. 2017. A Mini Review on Hydrogels Classification And Recent Developments In Miscellaneous Applications. Materials Science and Engineering C. DOI: 10.1016/j.msec.2017.05.096.
  • Webber RE, Creton C, Brown HR, et al. 2007. Large Strain Hysteresis And Mullins Effect of Tough Double-Network Hydrogels. Macromolecules 40(8). DOI: 10.1021/ma062924y.
  • Yang CH, Wang MX, Haider H, et al. 2013. Strengthening Alginate/polyacrylamide hydrogels using various multivalent cations. ACS Applied Materials and Interfaces 5(21). DOI: 10.1021/am403966x.
  • Zhao Y, Wang Y, Niu C, et al. 2018. Construction of polyacrylamide/graphene oxide/gelatin/sodium alginate composite hydrogel with bioactivity for promoting Schwann cells growth. Journal of Biomedical Materials Research - Part A 106(7). DOI: 10.1002/jbm.a.36393.