Bir Gaz Türbin Motoru Kompresör PalesininTi6Al4V Alaşımından Eklemeli Üretim Yöntemi ile İmalatı ve Boyutsal Doğrulaması

Bu çalışmada, bir gaz türbin motoruna ait kompresör palesinin, Ti6Al4V alaşımından Eklemeli Üretim (EÜ) yöntemiyle üretimi ve boyutsal doğrulama ölçümleri gerçekleştirilmiştir. Havacılık endüstrisinde yaygın kullanılan Direkt Metal Lazer Sinterleme (DMLS) yöntemi seçilmiştir. İmalattan sonra her bir palede 87 adet olmak üzere toplam 174 yüzey ölçümü gerçekleştirilmiştir. Ölçümlerde, katı modele oranla, 1 Nu’lı palede ortalama +0,0944/-0,0809 mm arasında, 2 Nu’lı palede ortalama +0,1093/-0,0978 mm değişim olduğu belirlenmiştir. Her iki paledeki geometrik değişimin birbiri ile tutarlı sonuçlar verdiği gözlemlenmiştir. Sonuç olarak, bir uçar-parçanın uçağa takılmasına yönelik uçuşa elverişlilik çalışmaları konusuna girmeden, bir gaz türbin motoru kompresör palelerinin Ti6Al4V alaşımından EÜ yöntemi ile üretilebileceği ortaya konulmuştur.

Manufacture and Dimensional Verification of a Gas Turbine Engine Compressor Blade Produced via Additive Manufacturing Method using Ti6Al4V

In this study, the production of a compressor blade belonging to a gas turbine engine via Additive Manufacturing (AM) method using Ti6Al4V alloy and dimensional verification measurements were performed. The Direct Metal Laser Sintering (DMLS) method, which is widely used in the aviation industry was chosen. After manufacturing, a total of 174 surface measurements were made, 87 on each blade. In the measurement, it was determined that there is an average deviation of +0.0944/-0.0809 mm in the 1st blade and +0.1093/-0.0978 mm in the 2nd blade compared to the 3D solid model. It was observed that the geometric deviation of the two blades is consistent with each other. As a result, it has been demonstrated, that compressor blades of a gas turbine engine can be produced via AM method using Ti6Al4V without dealing with the airworthiness studies for manufacturing the airborne part.

___

  • Peter, S. 2003. “Gas turbine technology”, Physics Education, vol: 38, p. 504-511, DOI:10.1088/0031-9120/38/6/002
  • Mitsuhiro, T., Masashi K. 2014. “Making Lighter Aircraft Engines with Titanium Aluminide Blades”, IHI Engineering Review, vol:47, p. 10-13
  • Burgi, Y. P., Caillet, M., & Haefeli, S. 2002. “Field temperature measurements at Erta’Ale Lava Lake, Ethiopia”, Bulletin of Volcanology”, vol: 64, p. 472-485. doi:10.1007/s00445-002-0224-3
  • Ma, F., Cao, W., Luo, Y., Qiu Y. 2016. “The review of manufacturing technology for aircraft structural part”, Procedia CIRP, vol: 56, p. 594–598, https://doi.org/10.1016/j.procir.2016.10.117.
  • Noh, H.M., Benito A., Alonso G. 2016, “Study of the current incentive rules and mechanisms to promote biofuel use in the EU and their possible application to the çivil aviation sector” Transportation Research Part D: Transport and Environment, vol: 46, p. 298–316, https://doi.org/10.1016/j.trd.2016.04.007.
  • Kenaroğlu, Y. 2010. “Hava Araçlarının Uçuşa Elverişlilik Sertifikasyonu”. Mühendis ve Makina. 52, 614, 16-28.
  • Saraçyakupoğlu, T. 2020. Emniyet İrtifasından Bilgiler: Genel Havacılık, Üretim ve Bakım Süreçleri. ISBN: 978-625-402-030-8, Nobel Akademik Yayıncılık, Ankara.
  • Sivil Havacılık Genel Müdürlüğü (SHGM), 2018, “Havacılıkta Parça ve Cihaz Sertifikasyonu Rehber Dokümanı”, p. 14
  • Şöhret Y.,Ekici S.,Altuntaş Ö., Hepbaşlı A., Karakoç T.H. 2016, “Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review”, Progress in Aerospace Sciences, Vol: 83, p. 57-69, https://doi.org/10.1016/j.paerosci.2016.03.001
  • Zhang, L., & Chen, L. 2019. “A Review on Biomedical Titanium Alloys: Recent Progress and Prospect”. Advanced Engineering Materials. Vol: 21, p. 1-29, doi:10.1002/adem.201801215
  • Shuhui, H., Yingying, Z., Debin, S. 2013.”Application of thermohydrogen processing to Ti6Al4V alloy blade isothermal forging”. Materials Science and Engineering: A, Vol: 561, p. 17–25. doi:10.1016/j.msea.2012.10.056
  • Zhuang, J.-R., Lee, Y.-T., Hsieh, W.-H., & Yang, A.-S. 2018. “Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder”. Optics & Laser Technology, vol: 103, p. 59–76. doi:10.1016/j.optlastec.2018.01.013
  • Greitemeier, D., Palm, F., Syassen, F., & Melz, T. (2017). Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting. International Journal of Fatigue, Vol: 94, p. 211–217. doi:10.1016/j.ijfatigue.2016.05.001
  • Liu, R., Wang, Z., Sparks, T., Liou, F., & Newkirk, J. 2017. “Aerospace applications of laser additive manufacturing”. Laser Additive Manufacturing, p. 351–371. doi:10.1016/b978-0-08-100433-3.00013-0
  • Han, P. 2017. “Additive Design and Manufacturing of Jet Engine Parts”. Engineering, vol:3(5), p. 648–652. doi:10.1016/j.eng.2017.05.017
  • Xu, X., Lu, Y., Li, S., Guo, S., He, M., Luo, K., Lin, J. 2018. “Copper-modified Ti6Al4V alloy fabricated by selective laser melting with pro-angiogenic and anti-inflammatory properties for potential guided bone regeneration applications”. Materials Science and Engineering: C, vol: 90, p. 198–210. doi:10.1016/j.msec.2018.04.046
  • Urtekin, L., Keleş, Ö. 2019. “Biyomedikal Uygulamalar İçin TiN Kaplı Ti6Al4V Alaşımının Mekanik Özelliklerinin Araştırılması”. Savunma Bilimleri Dergisi. vol: 18 (2), pp. 91-108. DOI: 10.17134/khosbd.642142
  • Seabra, M., Azevedo, J., Araújo, A., Reis, L., Pinto, E., Alves, N., Santos R., Mortágua, J. P. 2016. “Selective laser melting (SLM) and topology optimization for lighter aerospace componentes”. Procedia Structural Integrity, Vol: 1, p. 289–296. doi:10.1016/j.prostr.2016.02.039
  • Farooq, M.U., Ali, M.A., He, Y., Khan, A.M., Pruncu, C.I., Kashif, M., Ahmed, N., Asif, N. 2020. “Curved profiles machining of Ti6Al4V alloy through WEDM: investigations on geometrical errors”. Journal of Materials Research and Technology, vol: 9 (6), p. 16186-16201,https://doi.org/10.1016/j.jmrt.2020.11.067
  • Garmendia, I., Flores, J., Madarieta, M., Lamikiz, A., Uriarte, L.G., Soriano, C. 2020. “Geometrical control of DED processes based on 3D scanning applied to the manufacture of complex parts.” 11th CIRP Conference on Photonic Technologies. 7-10 Eylül 2020, Almanya.
  • Li, M., Li, J., Yang, D., He. 2020. Dimensional Deviation Management for Selective Laser Melted Ti6Al4V Alloy Blade”. Frontiers in Materials. vol:7, p.1-10
  • Annamaria, G., Kazarian M., Martina F., Mehrpouya M. 2019, “Metal additive manufacturing in the commercial aviation industry: A review”, Journal of Manufacturing Systems, vol: 53, p. 124-149, https://doi.org/10.1016/j.jmsy.2019.08.005
  • Saraçyakupoğlu, T. 2019. “Havacılık Endüstrisinde 3 Boyutlu Üretim Uygulamalarının Uçuşa Elverişlilik Kural ve Düzenlemelerine Göre Değerlendirilmesi”, International Journal of 3D Printing Technologies and Digital Industry, vol: 4, p. 53-65
  • Yusuf S.M.,Cutler S., Gao N. 2019. “Review: The Impact of Metal Additive Manufacturing on the Aerospace Industry.”, Metals, Vol: 9, p. 1286, doi:10.3390/met9121286
  • Gibson, I., Rosen, D., Stucker B. 2015. “Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing”, ISBN 978-1-4939-2112-6, DOI 10.1007/978-1-4939-2113-3, Springer, New-York
  • Yamanaka, K., Saito, W., Mori, M., Matsumoto, H., Chiba, A. 2015. “Preparation of weak-textured commercially pure titanium by electron beam melting”, Additive Manufacturing, vol: 8, p.105–109, http://dx.doi.org/doi:10.1016/j.addma.2015.09.007
  • Barroqueiro, B., Andrade-Campos, A., Valente, R.A.F. 2019. “Designing Self Supported SLM Structures via Topology Optimization” Journal of Manufacturing and Materials Processing, vol:3, p. 68, https://doi.org/10.3390/jmmp3030068
  • Rizzo, A., Goel, S., Luisa, G.M., Iglesias, R., Jaworska, L., Lapkovskis, V., Novak, P., Postolnyi, B.O., Valerini, D. 2020. “The Critical Raw Materials in Cutting Tools for Machining Applications: A Review.”, Materials. vol: 13, p. 1377, https://doi.org/10.3390/ma13061377
  • Poyraz, Ö., Kuşhan M.C. 2018. “Havacılık Komponentlerinin Bakım Uygulamalarında Katmanlı İmalat Teknolojilerinin Kullanımı.”, Mühendis ve Makina, Vol. 59 (691), p. 59-69
  • Ateş, H., Düzgün M. 2020. “İnsansız Hava Araçları (İHA) Temel Bilgiler ve Kullanım Alanları”, p. 144, ISBN: 978-625-406-738-9 Nobel Akademik Yayıncılık, Ankara
  • American Society for Testing and Materials (ASTM) 1472, Standard Specification for Wrought Titanium -6Aluminum -4Vanadium Alloy (UNS R56400) for Surgical Implant Applications
  • American Society for Testing and Materials (ASTM) 2924, Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion
  • Jiménez, M., Romero, L., Domínguez, I.A., Espinosa, M.M., Domínguez, M. 2019. “Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects”, Complexity, Vol: 2019, p.30, https://doi.org/10.1155/2019/9656938
  • Liu, S., Shin, Y.C. 2019. “Additive manufacturing of Ti6Al4V alloy: A review”, Materials and Design, Vol:164, p. 107552, https://doi.org/10.1016/j.matdes.2018.107552
  • Wang, M., Lin, X., Huang W. 2016. “Laser additive manufacture of titanium alloys”, Materials Technology, Vol: 31, p. 90-97, DOI: 10.1179/1753555715Y.0000000079
  • Körner, C. 2016. “Additive manufacturing of metallic components by selective electron beam melting — a review”, International Materials Reviews, Vol: 61, p. 361-377, DOI: 10.1080/09506608.2016.1176289
  • Herzog, D., Seyda V., Wycisk E., Emmelmann C. 2016. “Additive manufacturing of metals”, Acta Materialia, Vol: 117, p. 371-392, https://doi.org/10.1016/j.actamat.2016.07.019
  • Becker, T., Mathias, B., Cornie, S. 2015. “Microstructure and mechanical properties of direct metal laser sintered TI-6AL-4V”. South African Journal of Industrial Engineering, vol. 26. P. 1-10. 10.7166/26-1-1022.
  • Zhu, J., Zhou, H. Wang, C., Zhou L., Yuan S., Zhang W. 2021. “A review of topology optimization for additive manufacturing: Status and challenges”, Chinese Journal of Aeronautics, Vol: 34, Issue 1, p. 91-110,https://doi.org/10.1016/j.cja.2020.09.020
  • Shamsdini, S., Shakerin, S., Hadadzadeh, A., Amirkhiz, B. S., Mohammadi, M. 2020. “A trade-off between powder layer thickness and mechanical properties in additively manufactured maraging steels”. Materials Science and Engineering: A, vol: 776, p. 139041. doi:10.1016/j.msea.2020.139041
  • Shi, X., Ma, S., Liu, C., Chen, C., Wu, Q., Chen, X., Lu, J. 2016. “Performance of High Layer Thickness in Selective Laser Melting of Ti6Al4V”, Materials , vol:9, p. 975, https://doi.org/10.3390/ma9120975
  • Mierzejewska, Ż.A., Hudák, R., Sidun, J. 2019, “Mechanical Properties and Microstructure of DMLS Ti6Al4V Alloy Dedicated to Biomedical Applications”, Materials, vol: 12, p.176, https://doi.org/10.3390/ma12010176
  • Agius, D., Kourousis, K.I., Wallbrink, C. 2018, “A Review of the As-Built SLM Ti-6Al-4V Mechanical Properties towards Achieving Fatigue Resistant Designs”, Metals, Vol: 8, p. 75, https://doi.org/10.3390/met8010075
  • Poyraz, Ö., Kuşhan, M.C. 2017. “ Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi “, Mühendislik ve Mimarlık Fakültesi Dergisi, Vol: 33, 729-742, DOI:10.17341/gazimmfd.416479
  • Sola, A., Nouri, A. 2019. “Microstructural porosity in additive manufacturing: The formation and detection of pores in metal parts fabricated by powder bed fusion”, Vol: 1, p. 10021, DOI: 10.1002/amp2.10021
  • Bandyopadhyay A., Bose S. 2020. “Additive Manufacturing”, ISBN: 978-1-138-60925-9, Taylor & Francis Group, New-York
  • Khairallah S.A., Anderson A.T., Rubenchik A., King W.E. 2016. “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones”, Acta Materialia, Vol: 108, p.36-45,https://doi.org/10.1016/j.actamat.2016.02.014
  • Vilardell, A.M., Yadroitsev, I., Yadroitsava, I., Albu, M., Takata, N., Kobashi, M., Krakhmalev, P., Kouprianoff, D., Kothleitner, G., Plessis, A.D. 2020. “Manufacturing and characterization of in-situ alloyed Ti6Al4V(ELI)-3 at.% Cu by laser powder bed fusion”, Additive Manufacturing, Vol:36, p. 101436, https://doi.org/10.1016/j.addma.2020.101436
  • Guo, Q., Zhao,C., Qu,M., Xiong, L., Escano, L.I., Hojjatzadeh, S.M.H., Parab, N.D., Fezzaa, K., Everhart, W., Sun, T., Chen, L. 2019. “In-situ characterization and quantification of melt pool variation under constant input energy density in laser powder bed fusion additive manufacturing process”, Additive Manufacturing, Vol:28, p. 600-609,https://doi.org/10.1016/j.addma.2019.04.021
  • Kusuma, C., Ahmed, S.H., Mian, A., Srinivasan R. 2017. “Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)”. Journal of Materials Engineering and Performance, vol: 26, p. 3560–3568, https://doi.org/10.1007/s11665-017-2768-6
  • Yu, N. 2005. Process Parameter Optimization for Direct Metal Laser Sintering (DMLS), Doktora tezi, National University of Singapore, Singapur
  • Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S.M. 2015. “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control”, Additive Manufacturing, vol:8, p. 12-35, https://doi.org/10.1016/j.addma.2015.07.002
  • Yu, J., Lin, X., Ma, L., Wang, J., Fu, X., Chen, J., Huang, W. 2011. “Influence of laser deposition patterns on part distortion, interior quality and mechanical properties by laser solid forming (LSF)”, Materials Science and Engineering: A, vol: 528, p. 1094-1104, https://doi.org/10.1016/j.msea.2010.09.078
  • Guzanová, A., Ižaríková, G., Brezinová, J., Živčák, J., Draganovská, D., & Hudák, R. 2017. “Influence of Build Orientation, Heat Treatment, and Laser Power on the Hardness of Ti6Al4V Manufactured Using the DMLS Process”, Metals, Vol: 7(8), 318. doi:10.3390/met7080318
  • Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H. A., Maier, H. J. 2013. “On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance”. International Journal of Fatigue, Vol: 48, p. 300–307. doi:10.1016/j.ijfatigue.2012.11.011
  • Flower, H. M. 1995. “High performance materials in Aerospace”. ISBN: 978-94-010-4296-3. DOI:10.1007/978-94-011-0658-6.Springer. Londra, İngiltere.
  • Malefane, L.B. 2019. “Determination of the fatigue properties of Ti6Al4V (ELI) parts built by a direct metal laser sintering system with standard process parameters followed by post-processing treatments”, Central University of Technology, Free State