Wind Flow Analysis on Simple Plan-Shaped Buildings

Understanding the wind effects on the building is of great importance in the architectural field. The present study focuses on the analyse of various simple plan shaped buildings with different aspect ratios under various wind velocity to examine wind pressure distributions, and velocity distributions on and around the building. Therefore, the main evaluation criteria are plan shapes, building aspect ratios, storey height and wind velocity. With this aim, ANSYS Fluent 20.0 Computational Fluid Dynamics (CFD) software package program is used for the analysis. As a result of the study, it has been observed that the aspect ratios of width/height ratios (WR) and length/height (LR) ratios, building plan shape and wind velocity significantly affect the wind characteristics of the building. It has been observed that the change in the plan geometry did not have a significant effect on pressure coefficients on leeward surface. However, the change on the plan shape or variation in the aspect ratios have critical effects in the pressure coefficients on side surfaces. As the length of the building increased, the pressure values increased on the side surfaces. On the other hand, it has been noticed that building aspect ratios have significant impacts on pressure values. The most critical pressure values were observed on windward surface and on side surfaces in D4 model which has the greatest length ratio (L/H) of 6.0.

Basit Plan Formlu Binalarda Rüzgar Akış Analizi

Bina üzerine etkiyen rüzgar yüklerinin anlaşılması büyük önem taşımaktadır. Bu çalışma, rüzgar basınç dağılımlarını ve bina yüzeyindeki ve etrafındaki hız dağılımlarını incelemek için çeşitli rüzgar hızları altında farklı en-boy-yükseklik oranlarına sahip farklı basit plan geometrili binaların analizine odaklanmaktadır. Bu nedenle, ana değerlendirme kriterleri plan şekilleri, bina en-boy-yükseklik oranları, kat yüksekliği ve rüzgar hızıdır. Bu amaçla, ANSYS Fluent 20.0 Hesaplamalı Akışkanlar Dinamiği yazılım paket programı analiz için kullanılmaktadır. Çalışma sonucunda, genişlik/yükseklik oranları ve uzunluk/yükseklik oranlarının, bina planı şeklinin ve rüzgar hızının binanın rüzgar özelliklerini önemli ölçüde etkilediği görülmüştür. Plan geometrisindeki değişimin, binanın rüzgar altı yüzeyindeki basınç katsayılarında önemli bir etkiye sahip olmadığı tespit edilmiştir. Ancak plan şeklindeki değişiklikler veya en-boy-yükseklik oranlarındaki farklılıklar, binanın yan yüzeylerindeki basınç katsayılarında kritik etkilere sahiptir. Bina uzunluğu arttıkça yan yüzeylerdeki basınç değerleri de artmıştır. Öte yandan, bina en-boy-yükseklik oranlarının basınç değerleri üzerinde önemli etkileri olduğu görülmüştür. En kritik basınç değerleri, uzunluk oranı 6.0 ile en yüksek uzunluk oranına sahip D4 kodlu modelin rüzgar üstü yüzeyinde ve yan yüzeylerinde görülmüştür

___

Ahmad, S., & Kumar, K. (2002). Effect of Geometry on Wind Pressures on Low-Rise Hip Roof Buildings. Journal of Wind Engineering and Industrial Aerodynamics, 90(7), 755-779. https://doi.org/10.1016/S0167-6105(02)00152-6

Aygün, C., & Başkaya, Ş. (2003). Çok Katlı Bir Bina Etrafındaki Rüzgar Akışının Oluşturduğu Yüzey Basınçlarının Deneysel Olarak İncelenmesi. Gazi Ünivesitesi Mühendislik Mimarlık Fakültesi Dergisi, 18(4), 15-31.

Bairagi, A.K., & Dalui, S.K. (2020). Distribution of Wind Pressure Around Different Shape Tall Building. In M. Vinyas et al. (Eds.), Advances in Structures, Systems and Materials (31-38). Springer Nature Singapore Pte Ltd. https://doi. org/10.1007/978-981-15-3254-2_4

Becker, S., Lienhart, H., & Durst, F. (2002). Flow around threedimensional obstacles in boundary layers. Journal of Wind Engineering and industrial aerodynamic, 90(4-5), 265-279. https://doi.org/10.1016/S0167-6105(01)00209-4

Bhattacharyya, B., & Dalui S.K. (2018). Investigation of mean wind pressures on ‘E’ plan shaped tall building. Wind and Structures, 26(2), 99-114. http://dx.doi.org/10.12989/ was.2018.26.2.099

Blocken, B., Carmeliet, J., & Stathopoulos, T. (2007). CFD Evaluation oftheWind Speed Conditionsin Passages between Buildings—Effect of Wall-function Roughness Modifications on the Atmospheric Boundary Layer Flow. Journal of Wind Engineering and Industrial Aerodynamics, 95 (9-11), 941- 962. https://doi.org/10.1016/j.jweia.2007.01.013

Blocken, B. (2015). Computational fluid dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations, Building and Environment, 91, 219–245. https://doi.org/10.1016/j.buildenv.2015.02.015

Fertelli, A.,& Balta, M. (2017). Tek ve İki Bina Etrafındaki Rüzgar Etkilerinin Sayısal Olarak İncelenmesi. Çukurova University Journal of the Faculty of Engineering and Architecture, 32 (3), 111-119.

Franke, J. (2006). Recommendations of the Cost Action C14 on the use of CFD in Predicting Pedestrian Wind Environment. 4th International Symposium on Computational Wind Engineering, Japan Association for Wind Engineering, Yokohama, 529–532.

Gölbaşı, D., Buyruk, E., & Şahin, B. (2015). Farklı Geometrilere Sahip Olan Binalarda Akış Yapılarının Sayısal ve Deneysel Olarak İncelenmesi. TMMD Dergisi, 46-55.

Hasol, D. (1994). Japonya’dan İzlenimler. Yapı Dergisi, 150, 46-57. He, B.J., Yang, L., & Ye, M. (2014). Strategies for creating good wind environment around Chinese residences. Sustainable Cities and Society, 10, 174–183. https://doi.org/10.1016/j. scs.2013.08.003

Holmes, J.D., Tamura, Y., & Krishna, P. (2008). Wind Loads on Low, Medium and High Rise Buildings by Asia-Pacific Codes. The 4th International Conference on Advances in Wind and

Structures, Jeju, Korea, 73-90,Huang, P., Luo, P., & Gu, M. (2005). Pressure and forces measurements on CAARC standard Tall building in wind tunnel of Tong Ji University. In Proceedings of the 12th national wind engineering conference of China, Xi’an, China, 240–244.

Karadağ, İ., & Serteser, N. (2019). Rüzgar-Yapı Etkileşiminin Ön Tasarım Aşamasında Tahminine Yönelik Bir Algoritma, Megaron, 14 (2), 205-212. https://doi.org/10.14744/ MEGARON.2018.37167

Kim, Y.C., Yoshida A., & Tamura Y. (2012). Characteristics of surface wind pressures on low-rise building located among large group of surrounding buildings. Engineering Structures, 35, 18-28. https://doi.org/10.1016/j.engstruct.2011.10.024

Li, Y., Duan, R.B., Li, Q.S., Li, Y.G., & Li, C. (2020). Research on the characteristics of wind pressures on L-shaped tall buildings. Advances in Structural Engineering, 23 (10), 2070-2085. https://doi.org/10.1177/1369433220906934

Liu, Z., Yu, Z., Chen, X., Cao, R., & Zhu, F. (2020). An investigation on external airflow around low-rise building with various roof types: PIV measurements and LES simulations. Building and Environment, 169, 1-20. https://doi.org/10.1016/j. buildenv.2019.106583

Mallick, M., Kumar, A., & Patra, K.C. (2019). Experimental Investigation on the Wind-Induced Pressures on C-Shaped Buildings. Journal of Civil Engineering, 23 (8), 3535-3546. https://doi.org/10.1007/s12205-019-1929-6

Montazeri, H., & Blocken, B. (2013). CFD simulation of wind induced pressure coefficients on buildings with and without balconies: validation and sensitivity analysis, Building and Environment, 60, 137–149. https://doi.org/10.1016/j. buildenv.2012.11.012

Mou, B., He, B.J., Zhao, D.X., Chau, & K.W. (2017). Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Engineering Applications of Computational Fluid Mechanics, 11 (1), 293–309. https://doi. org/10.1080/19942060.2017.1281845

Ok, V. (2010). Sağlıklı Kentler İçin Pasif İklimlendirme ve Bina Aerodinamiği.Tesisat Dergisi, 103, 33-40.

Patankar, S. (1980). Numerical Heat Transfer and Fluid Flow. Taylor & Francis Group, Hemisphere, Washington, D.C.

Roberson, J.A., Crowe, & C.T. (1978). Pressure Distribution on Model Buildings at Small Angles of Attack in Turbulent Flow. Proc. 3rd U.S. Natl. Conf. on Wind Engineering Research, University of Florida, 28-41 . Şabanoğlu,Ö.,&Çağdaş,G.(2019). Toplu Konut Yerleşimlerindeki Açık Alanlarda Rüzgarın Kullanıcı Konforuna Etkisinin Analizi ve Değerlendirilmesi. Megaron, 14 (Suppl. 1), 53-69. https:// doi.org/10.5505/MEGARON.2018.91668

Tominaga, Y., Mochida, A., Yoshiec, R., Kataokad, H., Nozue, T., Yoshikawa, M., & Shirasawa, T. (2008). AIJ Guidelines for Practical Applications of CFD to Pedestrian Wind Environment around Buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96(10-11), 1749 – 1761. https://doi. org/10.1016/j.jweia.2008.02.058

Tong, Z., Chen, Y., Malkawi, A., Adamkiewicz, G., & Spengler, J.D. (2016). Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Environment International, 89, 138–146. https:// doi.org/10.1016/j.envint.2016.01.016

Uematsu, Y., & Isyumov, N. (1999). Wind pressures acting on low-rise buildings. Journal of Wind Engineering and Industrial Aerodynamics, 82(1-3), 1-25. https://doi.org/10.1016/ S0167-6105(99)00036-7

Weerasuriya, A.U. (2013). Computational Fluid Dynamic (CFD) Simulation of Flow around Tall Buildings. Engineering, 46(3), 43-56. https://doi.org/10.4038/engineer.v46i3.6784

Xu, X., Yang, Q., Yoshida, A., & Tamura, Y. (2017). Characteristics of pedestrian-level wind around super-tall buildings with various configurations. Journal of Wind Engineering and Industrial Aerodynamics, 166, 61–73. https://doi.org/10.1016/j.jweia.2017.03.013

Zhao, D.X. He, & B.J. (2017). Effects of architectural shapes on surface wind pressure distribution: case studies of ovalshaped tall buildings. Journal of Building Engineering, 12, 219–228. http://dx.doi.org/10.1016/j.jobe.2017.06.009

Zhao, Z.Q.,He, B.J., Li, L.G.,Wang,H.B.,&Darko, A.(2017). Profile and concentric zonal analysis of relationships between land use/land cover and land surface temperature: case study of Shenyang, China. Energy and Buildings, 155, 282–295. https://doi.org/10.1016/j.enbuild.2017.09.046