Kurşun (Pb) ile kirlenmiş topraklarda ayçiçeği ve mısırın fitoekstraksiyonu üzerine EDTA ve DTPA’nın etkileri

Bitkisel ekstraksiyon, yüksek biyokütleli bitkilerin kullanımı vasıtasıyla kirlenmiş topraktan ağır metallerin kaldırılması için etkili bir yöntem olarak ileri sürülmüştür. Bu çalışma; artan konsantrasyonlarda (0, 4, 8 mmol kg-1) uygulanan EDTA ve DTPA’nın, kurşun (Pb) ile kirlenmiş toprakta yetiştirilen Mısır (Zea mays L. ) ve Ayçiçeği (Helianthus annuus L.) bitkilerinin bitkisel ekstraksiyonu üzerine etkisini, bitkisel ekstraksiyon yöntemi ile topraktan Pb’u toprak üstü aksamlarında ne kadar biriktirdiğini ve kirlenmiş toprağın bu metallerden ne kadar temizlendiğini belirlemek amacıyla yapılmıştır. Denemede kullanılan toprak materyali KAYSERİ/YAHYALI’daki karbonat tipi Pb-Zn maden ocaklarına yakın tarım arazisinden alınmıştır. Mısır (Z. mays) ve ayçiçeği (H. annuus) bitkileri kontrollü sera koşullarında 10 hafta yetiştirilmiş ve hasattan 2 hafta önce EDTA ve DTPA uygulamaları yapılmıştır. Deneme sonunda araştırmada kullanılan toprağın ve bitkilerin Pb kapsamını belirlemek amacıyla toprağın toplam ve ekstrakte edilebilir ve bitkideki Pb konsantrasyonları belirlenmiştir. Toplam Pb içeriği 448.64 mg kg-1 olan toprağa artan dozlarda EDTA ve DTPA uygulanması sonucu, toprakta yetiştirilen mısır (Z. mays) ve ayçiçeği (H. annuus) bitkilerinin gövdelerinde Pb konsantrasyonlarında artış gözlenmiştir. Bitkilerde Pb birikimindeki artış, toprağa EDTA ve DTPA ilave edilmesi ile toprak çözeltisinde Pb konsantrasyonunun artmasındandır. Mısır (Z. mays) ve ayçiçeği (H. annuus) bitkilerinin yüksek Pb konsantrasyonundan etkilenmediği saptanmıştır. Bitkilerin topraktan Pb’u bünyelerine alarak biriktirmesinde ve topraktaki alınabilir Pb miktarına, toprak pH’sının ve EDTA ile DTPA’nın önemli etkilerinin olduğu bulunmuştur.

Effects of EDTA and DTPA on phytoextraction of sun flower and maize using the soils contaminated by lead (Pb)

Chemically enhanced phytoextraction has been proposed as an effective approach to removing heavy metals from contaminated soil through the use of high biomass plants. This research is to test the effect of the applications of EDTA and DTPA (0, 4, 8 mmol kg-1) on the phytoextraction of maize (Zea mays L.) and sunflower (Helianthus annuus L.) grown in Pb contaminated soil. Experiment soil was provided by around from the Pb-Zn carbonate mines which are located near KAYSERİ/YAHYALI. Plants were grown controlled greenhouse conditions during 10 weeks. EDTA (ethylenediaminetetraacetic acid) and DTPA (diethylenetriaminepentaacetic acid) were applied to contaminated soil 2 week before harvest. For the purpose of determining the contents of lead of sample soil and plants, total soil and extractable and plant Pb concentrations have been defined. The results of EDTA and DTPA applications to a soil include total soil Pb 448.64 mg kg-1 showed that shoots Pb concentrations of maize and sunflower increased. The surge of Pb accumulation in these plants was associated with the surge of Pb level in the soil solution due to the addition of chelates to the soil. It was observed that maize and sunflower was not affected by Pb concentration of high level. Soi pH, EDTA and DTPA were found to have influence on the potential capacity of plants to absorb soil Pb and soil extractable Pb

___

  • Bucheli-Witschel M, Egli T (2001) Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiology Reviews 25: 69–106.
  • Checka RT, Corey RB, Helmke PA (1987) Effects of ionic and complexed metal concentrations on plant uptake of cadmium and micronutrient metals from solution. Plant and Soil 99: 335-345.
  • Chlopecka A, Bacon JR, Wilson MJ, Kay J (1996) Forms of cadmium, lead, and zinc in contaminated soils from southwest Poland. Journal of Environmental Quality 25: 69-79.
  • Cooper EM, Sims JT, Cunningham SD, Huang JW, Berti WR (1999) Chelate-assisted phytoextraction of lead from contaminated soils. Journal of Environmental Quality 28: 1709-1719.
  • Haktanır K, Arcak S, Erpul G, Tan A (1995) Yol kenarındaki topraklarda trafikten kaynaklanan ağır metallerin birikimi. Journal of Engineering and Environmental Sciences 19: 423-431.
  • Hammer D, Keller C (2003) Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use and Management 19: 144–149.
  • Heidari R, Khayami M, Farboodnia T (2005) Effect of pH and EDTA on Pb Accumulation in Zea mays seedlins. Journal of Agronomy 4: 49-54.
  • Hovsepyan A, Greıpsson S (2005) EDTA-enhanced phytoremediation of lead contaminated soil by corn. Journal of Plant Nutrition 28: 2037-2048.
  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction, Environmental Science and Technology 31: 800-805.
  • Kacar B, Katkat V, Öztürk Ş (2009) Bitki fizyolojisi. Nobel Bilim ve Araştırma Merkezi Yayınları, Ankara.
  • Karczewska A, Galka B, Kabala C, Szopka K, Kocan K, Dziamba K (2009) Effects of various chelators on the uptake of Cu, Pb, Zn and Fe by Maize and Indian mustard from silty loam soil polluted by the emissions from copper smelter. Fresenius Environmental Bulletin 10: 1967-1974.
  • Kırat G (2009) Görgü (Yeşilyurt-Malatya) Pb-Zn yatakları ve çevresindeki metallerin bitkilere yansıması. Doktora Tezi. Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ.
  • Lin C, Liu J, Liu L, Zhu T, Sheng L, Wang D (2009) Soil amendment application frequency contributes to phytoextraction of lead by sunflower at different nutrient levels. Environmental and Experimental Botany 65: 410-416.
  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils: Natural hyper accumulation versus Environmental Quality 30: 1919–1926.
  • phytoextraction. Journal of
  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyper accumulators Thlaspi caerulescens and Arabidopsis. Environmental Pollution 141: 115–125.
  • United States Environmental Protection Agency (2000) Introduction to Phytoremediation. 600/R-99/107.
  • Usta S (1995) Toprak Kimyası-Ders Kitabı. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Yayın No. 1387, Ankara
  • Vassil AD, Kapulnik Y, Raskin I, Salt DE (1998) The role of EDTA in lead transport and accumulation in Indian mustard. Plant Physiology 117: 447–453.
  • Vervaekea P, Luyssaerta S, Mertensa J, Meersb E, Tackb FMG, Lusta N (2003) Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environmental Pollution 126: 275–282.
  • Wallace A, Romney E, Alexander G, Kınnear J (1977) Phytotoxicity and some interactions of the essential trace metals iron, manganese, molybdenum, zinc, copper, and boron. Communications in Soil Science and Plant Analysis 8: 741-750.
  • Yong J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment 368: 456–464.
  • Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air and Soil Pollution 184: 235-242.