Üç Boyutlu Teory Çerçevesinde Yerel Yüzeye Yakın Tabakalarda Elastik ve Elastik Bağlı Sistemler İçin Kayıp Problemleri

Bu çalışmada üç boyutlu linerleştirilmiş teory kullanılarak (TLTS), bir boyutlu homojen sistem modeli çerçevesinde yerel yüzeye yakın tek katmanlı ve yarı-uzay elastic malzemeler ile kaplanmış bir sisteme bakılmıştır. Perturbasyo tekniği uygulayarak viskoelastik teorisinin üç boyutlu denklemleri ve sınır koşulları yardımı ile TLTS denklemleri elde edilmiştir. Laplace ve Fourier Yöntemlerinden yararlanarak, problem çözmek için yeni bir yöntem geliştirilmiştir

Three–dimensional Stability Loss Problems Of Local Near-surface Buckling Of A System Consisting Of An Elastıc Bond Layer And An Elastic Covering Layer

Within the framework of a piecewise homogenous body model and by the use of a threedimensional linearized theory of stability (TLTS), the local near-surface buckling of a material system consisting of a half-space which is covered by the single layer and halfspace materials is elastic. The equations of TLTS are obtained from the three-dimensional geometrically nonlinear equations of the theory of viscoelasticity by using the boundary form perturbations technique. By employing the Laplace and Fourier transform, a method for solving the problem is developed. Numerical results on the critical compressive forces and the critical times are presented.Buckling instability, curved-layer, critical time, local near-surface buckling, stability, viscoelastic layer

___

  • E. A. Aliyev, “Local near-surface buckling of a system consisting of elastic (viscoelastic) substrate, a viscoelastic (elastic) bond layer, and an elastic (viscoelastic) covering layer”, Mechanics of Composite Materials, 43, No 6, 521-534 (2007).
  • Akbarov S.D., Aliyev E.A, “On the near-surface failure of the layered viscoelasticMaterials’’, Mechanics of Composite Materials, 45, No 5, 477-488(2009).
  • M.A.Biot, Mechanics of Incremental Deformations, Wiley, New York (1965).
  • A.N.Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer-Verlag, Berlin (1999).
  • N.J.Hoff, “A surway of the theories of creep buckling’’, in proceedings of the Third US National Congress of the Applied Mechanics, ASME, New York (1958).
  • I.Yu.Babich, A.N. Guz and V.N. Chekov, “The Three-Dimentional Theory of Stability of fibrous and laminated materials’’, Int. Appl. Mech., 37, No.9, 1103– 1141 (2001).
  • R.A.Schapery, “Approximate method of transform inversion for viscoelastic stress analysis’’, Proc. US. Nat. Cong. Appl. ASME, 4, 1075–1085 (1966).
  • Yu.N.Rabotnov, Elements of Hereditary Mechanics of Solid Bodies [in Russian], Nauka, Moskow (1977)
  • A.Cilli, Fracture of the uni-directed fiber-layered composites in compression, PhD. Thesis, The Yildiz Technical University, Turkey, Istanbul, 1998-105p.
  • A.N.Guz, “Three-Dimensional Theory of Stability of Carbon Nanotube in a Matrix II’’, Int. Appl. Mech., 42, No.1, 19–31 (2006).
  • A.N.Guz and I.A.Guz, “On Models in the theory of stability of Multiwalled carbon nanotubes in matrix’’, Int. Appl. Mech., 42, No.6, 617–628 (2006).
  • Ya.A.Zhuk and I.A.Guz, “Influence of prestress on the velocities of waves propagating normally to the layers of nanocomposites’’, Int. Appl. Mech., 42, No.7, 729–743 (2006).
  • S.D. Akbarov, R. Kosker, K. Simsek, “Stress distribution in an infinite elastic body with a locally curved fiber in a geometrically non-linear statement”, Mechanics of Composite Materials , 41, No 4, 291-302 (2005).
  • Yu.M. Tarnopolsky, A.V.Rose, “Special feature of desigh of parts fabricated from reinforced plastics.(in Russian), Zinatne, Riga.
  • Guz A. N., Rushchitsky J.J., Guz I. A. Establishing fundamentals of the mechanics of nanocomposites// Int. Appl. Mechan. – 2007. – 43. No 3. – P.247-271.
  • Zhuk Yu. A., Guz I. A. Features of plane wave propagation along the layers of a pre-strained nanocomposites. Int. Appl. Mech. 2007; 43 (3): 361-379.
  • Argatov I. I. Averaging of a finely lamineted elastic medium with roughness or adhesion on the contact surfaces of the layers. J.Appl.Math.Mech.73:734-746.1997