Yüksek Sıcaklıklarda Yüksek Miktarda Yumuşama Eğilimi Gösteren Ti-6Al-4V Alaşımı İçin Yumuşama Modelinin Geliştirilmesi

Ti-6Al-4V (Ti6Al4V veya Ti64) alaşımı, ısıl işlem uygulanabilir ticari titanyum alaşımları içerisinde en çok kullanılan alaşımdır. Fakat bu alaşımın oda sıcaklığında şekillendirilmesi çok kötüdür. Neredeyse karmaşık bir parçanın üretimi imkansızdır. Bu alaşımın yüksek sıcaklıklardaki düzgün uzamadan sonraki deformasyonu oldukça yüksektir. Bu çalışmada, daha önce aluminyum-magnezyum alaşımları için geliştirilmiş olan Yumuşama Modeli (YM) iyileştirilerek yüksek sıcaklıklarda yüksek miktarda yumuşama eğilimi gösteren Ti-6Al-4V alaşımının akma eğrisinin tahmin edilebilme kabiliyeti arttırılmıştır. İyileştirilen model Geliştirilmiş Yumuşama Modeli (GYM) olarak adlandırılmıştır. Sonuçlar, Geliştirilmiş Yumuşama Modeli'nin Ti-6Al-4V alaşımı için mevcut Yumuşama Modeli'ne göre daha doğru tahmin yaptığını göstermiştir

Improvement ofSoftening Model for Ti-6Al-4VAlloy Havinga High Softening Tendency at Elevated Temperatures

Ti-6Al-4V (Ti6Al4V or Ti64) is the most commercially used heat treatable alloy in titanium alloys. However, room temperature (RT) formability of this alloy is very poor and it is almost impossible to produce complex shaped parts. It has significant post uniform elongation at high temperature deformations. In this study, a previously proposed softening model (SM) for aluminum-magnesium (Al-Mg) alloys was improved in order to increase flow curve prediction capability for Ti-6Al-4V alloy having a high softening tendency at elevated temperatures. The improved model was called as Improved Softening Model (ISM). Results indicate that the ISM has more accurate prediction than the SM for Ti-6Al-4V alloy

___

  • Beal, J. D., Boyer, R., Sanders, D., Company, B., 1988, Revised by the ASM Committee on Forming of Titanium Alloys, 14, American Society for Metals, 838-848.
  • Ozturk, F., Ece, R. E., Polat, N., Koksal, A., Evis, Z., Polat, A., 2013, Mechanical and microstructural evaluations of hot formed titanium sheets by electrical resistance heating process, Materials Science and Engineering: A, 578, 207-214.
  • Bergström, Y., 1983, The Plastic Deformation of Metals--a Dislocation Model and Its Applicability, Reviews on Powder Metalurgy and Physical Ceramics, 2, 2, 79-265.
  • Bergström, Y., 1970, A dislocation model for the stress-strain behaviour of polycrystalline ?-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations, Materials science and engineering, 5, 4, 193-200.
  • Johnson, G. R., Cook, W. H., 1985, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering fracture mechanics, 21, 1, 31-48.
  • Nes, E., 1997, Modelling of work hardening and stress saturation in FCC metals, Progress in Materials Science, 41, 3, 129-193.
  • Boogaard, V. D., Henricus, A., 2002, Thermally Enhanced Forming of Aluminium Sheet: Modelling and Experiments, 183.
  • Boogaard, V. D., Anton, H., Bolt, P. J., Werkhoven, R. J., 2001, Modeling of AIMg Sheet Forming at Elevated Temperatures, International journal of forming processes, 4, 361-376.
  • Boogaard, V. D., Huétink, J., 2004, "Modelling of aluminium sheet forming at elevated temperatures", in AIP Conference Proceedings, 893-898.
  • Haaren, L. V., 2002, "Deformation of aluminum sheet at elevated temperatures", in Master's Thesis, University of Twente, Netherlands.
  • Liempt, P. V., 1994, Workhardening and substructural geometry of metals, Journal of materials processing technology, 45, 1, 459-464.
  • Toros, S., Ozturk, F., 2010, Modeling uniaxial, temperature and strain rate dependent behavior of Al-Mg alloys, Computational Materials Science, 49, 2, 333-339.
  • Cowper, G. R., Symonds, P. S., 1957, Strain-hardening and strain-rate effects in the impact loading of cantilever beams. Division of Applied Mathematics, 187.
  • Johnson, G. R., Cook, W. H., 1983, "A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures", in Proceedings of the 7th International Symposium on Ballistics, 541-547.
  • Zerilli, F. J., Armstrong, R. W., 1987, Dislocation-mechanics-based constitutive relations for material dynamic calculations, Journal of Applied Physics, 61, 5, 1816-1825.
  • Toros, S., Ozturk, F., 2012, "Prediction of Tensile Behaviors for TRIP800 Steel Using the Softening Model", in International Conference on Materials Science and its Applications (ICMSA 2012), Taif University, Kingdom of Saudi Arabia.
  • Toros, S., Ozturk, F., Kaya, M., 2011, Modeling uniaxial, temperature, and strain rate dependent behavior of AZ31 alloy by softening model, Key Engineering Materials, 473, 624-630.
  • Vanderhasten, M., Rabet, L., Verlinden, B., 2007, Deformation mechanisms of Ti-6Al-4V during tensile behavior at low strain rate, Journal of materials engineering and performance, 16, 2, 208- 212.