GPS Destekli Bölütlenmiş Arka Plan Modellemesi İle Otonom Kara Araçlarından Dinamik Nesnelerin Tespiti

Bu çalışmada insansız kara araçlarının rotaları üzerinde bulunan hareketli nesneleri bilgisayar görme sistemleri kullanarak tespit edebilmesi için küresel konumlandırma sistemi destekli bir sistem geliştirilmiştir. Gerçek zamanlı çalışma öncesinde rota üzerinde belirlenen tüm koordinatlarda yalın arka planı temsil eden birer referans görüntü modeli oluşturulmuştur. Modelin oluşturulmasında 160x160 piksellik bloklar kullanılmıştır. Bu model elde edildiği koordinat bilgisi ile ilişkilendirilerek bilgisayar sistemi veri tabanında tutulur. Mobil aracın gerçek zamanlı hareketi sırasında araç belirlenen koordinatlara geldiği anda yakalan anlık görüntüler aynı yöntem ile modellenir. Sonrasında bu anlık model ile koordinatla ilişkilendirilmiş referans model çerçeve farkı yöntemi ile karşılaştırılır. İşlem sonucunda gri seviye değerleri belirlenen eşik değerden daha yüksek olan pikseller dinamik nesneler olarak kabul edilir. Geliştirilen yaklaşım ile hareketli platformlar üzerindeki kameralar ile hareketli nesneler konumsal olarak tespit edilebilmektedir. Rota üzerindeki her bir koordinat için hafızada tutulan referans modeller sayesinde hareketli kameraların oluşturduğu gürültünün dengelenmesi için karmaşık ve yüksek maliyetli işlemlere gerek duyulmamaktadır. Yapılan deneysel çalışmalarda geliştirilen sistemin anlık arka plan imge çerçevesinde bulunan nesneleri %100 ila %72.7 doğrulukta algılayabildiği ve düşük maliyetli bilgisayar sistemleri ile %4 işlemci yükü ve 0.020 sn. çerçeve başına işlem süresi ile çalışabildiği anlaşılmıştır

GPS Assisted MovingObject Detection From Unmanned Ground Vehicles by Segmented Background Modelling

In this study a global positioning system-aided model developed to be able to detect moving objects which located on the route of unmanned ground vehicles by using computer vision systems. Before real-time application, a reference model representing a simple background image was created on all coordinates determined on the route. 160x160 pixel blocks are used to generate the models. Each model associated with its coordinate information was stored into the application database. a number of snapshots are captured and modeled using the same method during the real time movement of the vehicle when the vehicle reached the specified coordinates. Then, these instant snapshots were compared with the reference model of the associated coordinates by using interframe differencing method. End of this process, the pixels which grey levels higher than the threshold were considered as dynamic objects. In the developed approach, moving objects can be detected by the camera on the spatially moving platform. There is no need for complex and costly process to compensate for the noise generated by the moving camera with reference model are held in memory for each coordinate on the route. In the experimental study, the Object detection accuracy in the instant background image frame of the developed system is observed between 100% and 72.7%, also It was determined that low-cost computer system can be used with 0.020 sec processing time per frame and 4% CPU load

___

  • Shimizu S., Yamamoto K., Wang C., Satoh Y., Tanahashi H., Niwa Y., 2006, "Moving object detection by mobile Stereo Omni-directional System (SOS) using spherical depth image", Pattern Analysis and Applications, 9(2-3), 113-126
  • Gamez D.A.M., Devy M., 2013, "Active vision-based moving objects detection from a motion grid". Mobile Robots (ECMR), IEEE 2013 European Conference, Barcelona, Spain
  • Yu Q., Medioni G., 2007, "Map-enhanced detection and tracking from a moving platform with local and global data association", IEEE Workshops on Motion and Video Computing, Austin, TX, USA
  • Kong H., Audibert J., Ponce J., 2010, "Detecting abandoned objects with a moving camera", IEEE Transactions on Image Processing, 19, 2201-2210
  • Foresti G.L. and Gentili S., 2000, "A vision based system for object detection in underwater images", International Journal of Pattern Recognition, 14(02), 167-188
  • Snorrasson M., Norris, J. and Backes P., 1999 "Vision based obstacle detection and path planning for planetary rovers," Proceedings of SPIE. Vol. 3693 Presented at 13th annual Aero sense. Orlando, FL
  • Albekord, K., Watkins, A., Wiens, G.L. and Fitz-Coy, N., 2004 "Multipleagent surveillance mission with non-stationary obstacles," Proceedings of 2004 Florida Conference on Recent Advances in Robotics, Orlando, Florida
  • Kosuge, K., Sato, M. and Kazamura, N., 2000, "Mobile robot helper" Proceedings of International Conference on Robotics and Automation, pp.583-588
  • Velasco-Arjona, A., and de Castro, M. L., 1997, "Fully robotic method for characterization of toxic residues", Analyst, 122(2), 123-128.
  • Philippsen, R., and Siegwart, R., 2003, "Smooth and efficient obstacle avoidance for a tour guide robot", In None (No. LSA-CONF-2003-018).
  • Gopalakrishnan, A., Greene, S., and Sekmen, A., 2005, "Vision-based mobile robot learning and navigation", In Robot and Human Interactive Communication, IEEE International Workshop, 48-53
  • Everett H.R., 1995, "Sensors for mobile robots: theory and application", AK Peters Ltd.
  • Kim S. and Kim H., 2010, "Optimally overlapped ultrasonic sensor ring design for minimal positional uncertainty in obstacle detection", International Journal of Control and Automation Systems, 8(6), 1280-1287
  • Alwan M., Wagner, M. B., Wasson, G. and Sheth, P., 2005, "Characterization of infrared range-finder pbs-03jn for 2-d mapping", In: Proc. IEEE ICRA, 3936-3941, Barcelona, Spain
  • Werner B., Surmann H. and Pervolz K., 2006, "3D time-of-flight cameras for mobile robotics", In: Proc. IROS, 790-795, Beijing, China
  • Kim, J. and Do, Y., 2012, "Moving obstacle avoidance of a mobile robot using a single camera", Procedia Engineering, 41, 911-916
  • Andreopoulos, A. and Tsotsos, J.K., 2013, "50 Years of object recognition: Directions forward", Computer Vision and Image Understanding, 117, 827-891
  • Guo, Y., Chen Y., Tang F., Li A., Luo W. and Liu M., 2014, "Object tracking using learned feature manifolds", Computer Vision and Image Understanding, 118, 128-139
  • Koller D., Luong Q.T. and Malik J., 1994, "Using binocular stereopsis for vision-based vehicle control", Proceedings of the Intelligent Vehicles' 94 Symposium, 237-242
  • Bugeau A., and Pérez P., 2009, "Detection and segmentation of moving objects in complex scenes". Computer Vision and Image Understanding, 113(4), 459-476
  • Chen X., 2008, "Application of Matlab in Moving Object Detection Algorithm", Future BioMedical Information Engineering 2008 FBIE '08 International Seminar on, Wuhan, China
  • Jarraya S.K. and Hammami M., Ben-Abdallah H., 2010, "Accurate Background Modeling for Moving Object Detection in a Dynamic Scene", Digital Image Computing: Techniques and Applications (DICTA), 2010 International Conference on, Sydney, Australia
  • Spagnolo P., Orazio T.D., Leo M. and Distante A., 2006, "Moving object segmentation by background subtraction and temporal analysis", Image and Vision Computing, 24, 411-423
  • Yu X., Chen X. and Gao M., 2012, "Motion Detection in Dynamic Scenes Based on Fuzzy C-Means Clustering", International Conference on Communication Systems and Network Technologies, Rajkot, India
  • Kim J., Ye G. and Kim D., 2010, "Movıng Object Detection Under Free-Movıng Camera", Proceedings of IEEE 17th International Conference on Image Processing, Hong Kong, China
  • Zhang Y., Kiselewich S.J., Bauson W.A. and Hammoud R., 2006, "Robust moving object detection at distance in the visible spectrum and beyond using a moving camera", Computer Vision and Pattern Recognition Workshop CVPRW'06. Conference on, New York, USA
  • Weng M., Huang G. and Da X., 2010, "A New Interframe Difference Algorithm for Moving Target Detection", Image and Signal Processing (CISP) 3rd International Congress, 1, 285-289, Yantai, China
  • Roth S., and Black M.J., 2007, "On the Spatial Statistics of Optical Flow". International Journal of Computer Vision, 74(1), 33-50
  • Liu, H., Hong T.H., Herman M., and Chellappa R., 1996 "Accuracy vs. efficiency trade-offs in optical flow algorithms", Editors: Buxton B., Cipolla R., Lecture Notes in Computer Science, 271-286, Cambridge, UK: Springer Berlin Heidelberg
  • Ren Y., Chua C.S. and Ho Y.K., 2003, "Statistical Background Modeling for Non-stationary Camera". Pattern Recognition Lettters, 24, 183-196
  • Sappa A.D., Dornaika F., Ger´onimo D. and L´opez A., 2008, "Registration-Based Moving Object Detection From A Moving Camera", 2008 Proc on Workshop on Perception Planning and Navigation for Intelligent Vehicles, Nice, France
  • Cheraghi S.A. and Sheikh U.U., 2012, "Moving Object Detection Using Image Registration For A Moving Camera Platform", Control System Computing and Engineering (ICCSCE) IEEE International Conference on, 355-359, Penang, Malaysia
  • Heijden F., 1996 "Image based measurement systems: object recognition and parameter estimation", Wiley
  • Otsu N., 1975, "A threshold selection method from gray-level histograms". Automatica, 11, (285-296), 23-27
  • Gonzalez R.C., Woods R.E. and Eddins S.L., 2009, "Digital image processing using MATLAB. 2nd ed", Gatesmark, USA
  • Stauffer C., Grimson W.E.L., 2009, "Adaptive background mixture models for real-time tracking", Proceedings of the IEEE Computer Society Conference on ComputerVision and Pattern Recognition, Fort Collins, CO, USA