Thermal stress analysis of cross-ply laminated thermoplastic composite-plates with a circular hole under uniform temperature change

Uniform sıcaklık altındaki tek dairesel delikli termoplastik tabakalı kompozit plaklarda ısıl gerilme analizi incelenmistir. Plak genisliğinin dairesel deliğin çapına oranı olan L/D; 2 mm ve 6 mm arasında ikiser birim değistirilerek seçilmistir. Plakaların çapraz olarak simetrik ve antisimetrik sekilde takviye edildikleri ve basit mesnetli oldukları kabul edilmistir. Plakalar dört adet ortotropik tabakacıktan meydana gelmistir. Uniform sıcaklık 35°C ile 75°C arasında 10°C arttırılarak uygulanmıstır. Çözümler, sonlu elemanlar çözümünde oldukça yaygın bir çözüm aracı olan ANSYS programı kullanılarak yapılmıstır. Sonuçlar, L/D oranındaki artısın çapraz olarak takviye edilmis hem simetrik hem de antisimetrik plaklarda meydana gelen ısıl gerilmelerin maksimum değerlerini arttırdığını göstermektedir.

Uniform sıcaklık değişimi altındaki dairesel delikli ve çapraz takviye edilmiş tabakalı termoplastik kompozit plaklarda ısıl gerilme analizi

Thermal stress analysis is investigated in thermoplastic laminated composite plates with a varied circular hole under uniform temperature. The width plate-to-the hole diameter, L/D, ratios are changed from 2 mm to 6 mm with two increment. The plates are assumed to be symmetric, antisymmetric cross-ply and to be simple supported. The plates are composed of four orthotropic layers. Uniform temperature was taken from 35°C to 75°C with 10°C increment. Solutions were performed by mean of ANSYS, a common finite element tool. The results show that the maximum thermal stresses increase with increasing of L/D ratios for both symmetric and antisymmetric cross-ply plates.

___

  • 1. Arslan, N. Çelik, M., “Thermoplastic Matrix Plates in Elasto-Plastic Finite Element Analysis”, Journal of Reinforced Plastics and Composites, 20, 1191-1204, 2001.
  • 2. Gigliotti, M. Jacquemin, F. and Vautrin, A., “On the Maximum Curvatures of 0/90 Plates under Thermal Stress”, Composite Structures, 68: 177-184, 2005.
  • 3. Sayman, O., “Thermal Stress Analysis in an Aluminum Metal–Matrix Orthotropic Disc”, Journal of Reinforced Plastics and Composites, 23, 1473-1479, 2004.
  • 4. Senel, M. Akbulut, H. and Toparlı, M., “Residual Stress Analysis in Symmetric Thermoplastic Laminated Plates under Thermal Loads: Analytic Solution”, Journal of Thermoplastic Composite Materials, 17: 481-507, 2004.
  • 5. Sayman, O. Belevi, M. and Duranay, M., “Thermal Stress Analysis and Residual Stresses in a Thermoplastic Composite Beam”, Journal of Reinforced Plastics and Composites, 22, 67-81, 2003.
  • 6. Shabana, Y. M. and Noda, N., “Thermo-Elasto-Plastic Stresses in Functionally Graded Materials Subjected to Thermal Loading Taking Residual Stresses of the Fabrication Process into Consideration”, Composites Part B: Engineering, 32: 111-121, 2001.
  • 7. Sayman, O. Karakuzu, R. Daghan, B. and Kocak S., “Elastic-Plastic Stress Analysis of Thermoplastic Composite Beams Under Temperature Distributed Linearly”, Journal of Thermoplastic Composite Materials, 15, 193-208, 2002.
  • 8. Chung, D.D.L., “Thermal Analysis of Carbon Fiber Polymer-Matrix Composites by Electrical Resistance Measurement”, Thermochimica Acta, 364, 121–132, 2000.
  • 9. Bektas, N.B. and Sayman, O., “Thermal Elastic-Plastic Stress Analysis in Simply Supported Thermoplastic Laminated Plates”, Journal of Reinforced Plastics and Composites, 21, 639-652, 2002.
  • 10. Apalak, M.K. Aldas, K. and Sen, F., “Thermal Non-Linear Stresses in an Adhesively Bonded and Laser-Spot Welded Single-Lap Joint During Laser–Metal Interaction”, Journal of Materials Processing Technology, 142, 1-19, 2003.
  • 11. Akay, M and Özden, S., “Measurement of Residual Stresses in Injection Molded Thermoplastics”, Polymer Testing, 13, 323–354, 1994.
  • 12. Bektas, N.B. and Sayman, O., “Elastic-Plastic Stress Analysis on Simply Supported Thermoplastic Laminated Plates under Thermal Loads Varying Linearly”, Journal of Reinforced Plastics and Composites, 22, 149-168, 2003.
  • 13. ANSYS. The general-purpose finite element software documentation.
  • 14. Moaveni, S., Finite Element Analysis: Theory and Application with ANSYS, 2nd edition. Pearson Education Inc. New Jersey, USA, 2003.
  • 15. Jones, R.M., Mechanics of Composite Materials, Taylor & Francis Inc. USA, 1999.