Farklı malzemelerden imal edilmis paletli rotorun titreşim analizi

Paletli kompresörler basınçlı hava üretiminde önemli bir yere sahiptir. Dönme ve basıncın etkisiyle paletli rotorlara değisik kuvvetler etki etmektedir. Bu kuvvetlerin etkisinde rotor statik ve dinamik zorlanmalara maruz kalmaktadır. Bu çalısmada, paletli kompresör rotor dökme demir, çelik, bakır ve pirinç malzemelerden modellenmis ve sonlu elemanlar metodu ile dinamik analizleri yapılmıstır. Rotorun doğal frekans ve mod sekilleri modal analiz ile her bir malzeme için belirlenmistir. Ayrıca, paletler üzerine gelen basınç kuvvetleri ve dönme hızı dikkate alınarak sönümlü harmonik analiz yapılmıstır. Bu analizde, malzemelerdeki frekans cevap sinyalleri elde edilmistir.

Vibration analysis of palette rotor manufactured from different materials

Palette compressors are important to produce compressed air. Depending on the velocity and pressure, different forces are effective on the rotor. These forces expose to the rotor as static and dynamic loads. In this study, the rotor was modeled as cast iron, steel, copper and brass and dynamic analysis are investigated using finite element method. Natural frequencies and mode shapes are determined for different materials using modal analysis. In addition, depending on pressure and angular velocity, damped harmonic analysis was carried out and frequency response signals are examined in the analyses.

___

  • 1. Arwin, A.C. & Bakis, C. E. 2006. Optimal design of pres-fitted filament wound composite flywheel rotors. Composite Structures vol 72: 47-57.
  • 2. Edwards K.L. & Davenport C. 2006. Materials for rotationally dynamic components: rationale for higher performance rotor-blade design. Materials and Design vol 27: 31-35.
  • 3. Aslantas K. & Talas S. & Tasgetiren S. 2004. Fracture of a compressor rotor made from grey cast iron. Engineering Failure Analysis vol 11: 369-373.
  • 4. Özgür, R. 2005. Paletli Kompresör Rotorunun Sonlu Elemanlar Metodu Đle Gerilme Analizi. A.Kocatepe Üni. Fen Bil. Enstitüsü.
  • 5. Das G. & Ray A.K. & Ghosh S. & Das S.K. & Bhattacharya D.K. 2003. Fatigue failure of a boiler feed pump rotor shaft. Engineering Failure Analysis vol 10: 725-732.
  • 6. Lee Y.Z. & Oh S. 2003. Friction and wear of the rotary compressor vane-roller for several sliding conditions. Wear. Vol 255: 1168-1173.
  • 7. Darpe A.K. & Chawla, A. & Gupta K. 2002. Analysis of the response of a cracked jeffcott rotor to axial excitation. J. of Sound and Vibration. vol 249(3): 429-445.
  • 8. Jing J.P. & Sun Y. & Xia S.B. & Feng G.T. 2001. A continuum damage mechanics model on low cycle fatigue life assessment of steam turbine rotor. I. J. of Pressure Vessels and Piping. vol 78:59-64.
  • 9. Dimentberg, M.F. 2005. Vibration of a rotating shaft with randomly varying internal damping. J. of Sound and Vibration vol 285: 759-765.
  • 10. Mba, D. & Hall L.D. 2002. The transmission of acoustic emission across large-scale turbine rotors. NDT&E International vol 35: 529-539.
  • 11. Lim S. & Park S.M. & Kim K. 2005. AI vibration control of high-speed rotor systems using electrorheological fluid. J. of Sound and Vibration vol 284: 685-703.
  • 12. Dimarogonas, A., 1995. Vibration for Engineers. Prectice Hall New Jersey.