İnsan ayağı biyomekaniğinin sonlu elemanlar yöntemiyle incelenmesi

Bu çalışmada insan ayağının anatomik olarak gerçeğe uygun 3 Boyutlu (3B) geometrik modeli oluşturulmuştur. Bu modelden istenen statik analizi gerçekleştirebilmek maksadıyla elemanlarına ayrılarak sonlu elemanlar modeli elde edilmiştir. Sonlu elemanlar modeli (SEM) sonuçları literatürdeki deneysel olarak doğrulanmış sonlu elemanlar modellerinin sonuçlarıyla karşılaştırılarak güvenilirliği belirlenmiştir. Literatürde ayakta stres kırıklarına en çok 2. ve 3. metatarsal kemiklerde rastlandığını belirtilmiştir. Yapılan sonlu elemanlar analizi sonucu da gerilmelerin metatarsal kemiklerde yoğunlaştığı, en hassas bölgelerin 2. ve 3. metatarsal kemiklerinin orta kısımları olduğu görülmüştür.

Investigation of human foot biomechanics by finite element method

In this study, an anatomically appropriate 3 Dimensional (3D) geometric model of the human foot and ankle was established. In order to carry out the static analysis, the finite element model (FEM) was acquired from the geometric model. The results of the FEM was compared with the models from the literature which were validated experimentally so as to determine its accuracy. In literature it is stated that the stress fractures are most common in 2. and 3. metatarsal bones of the foot. With the help of the FEM results of this study it is also shown that stress is concentrated in metatarsal bones and the most vulnerable parts are the midshafts of the 2. and 3. metatarsal bones.

___

  • 1. Chen W., JU C., Tang F., Ju C., 2001. Stress distribution of the foot during mid-stance to pushoff in bare foot gait: a 3D finite element analysis. Clinical Biomechanics 16,614-620.
  • 2. Cheung J.T., Zhang M., Leung A.K., Fan Y., 2005. Three-dimensional finite element analysis of the foot during standing—a material sensitivity study. Journal of Biomechanics 38, 1045–1054.
  • 3. Cheung J.T., Zhang M., 2005. A 3-Dimensional Finite Element Model of the Human Foot and Ankle for Insole Design. Archives of Physical Medicine and Rehabilitation 86, 353-358.
  • 4. Cheung J.T., Zhang M., An K., 2006. Effect of Achilles tendon loading on plantar fascia tension in the standing foot. Clinical Biomechanics 21,194–203.
  • 5. Dai X., Li Y., Zhang M., Cheung J.T., 2006. Effect of sock on biomechanical responses of foot during walking. Clinical Biomechanics 21,314-321.
  • 6. Cheung J.T., Zhang M., 2008. Parametric design of pressure-relieving foot orthosis using statistics-based finite element method. Medical Engineering and Physics 30, 269-277.
  • 7. Wu L., 2007. Nonlinear finite element analysis for musculoskeletal biomechanics of medial and lateral plantar longitudinal arch of Virtual Chinese Human after plantar ligamentous structure failures. Clinical Biomechanics 22,221-229.
  • 8. QIU T.X., TEO E., YAN Y., LEI W., 2011. Finite element modeling of a 3D coupled foot–boot model. Medical Engineering & Physics, article in press.
  • 9. Goske S., Erdemir A., Petre M., Budhabbatti S., Cavanagh P.R., 2006. Reduction of plantar heel pressures: Insole design using finite element analysis. Journal of Biomechanics 39,2363-2370.
  • 10. Oster J.A., 2010. Metatarsal Fractures. http://www.myfootshop.com/detail.asp?condition=metatarsal%20fractures