5754-O Al-Mg alaşımında ön gerilmenin geri esnemeye etkisinin deneysel ve sonlu elemanlar yöntemiyle incelenmesi

Bu çalısma kapsamında otomotiv endüstrisinde oldukça yaygın kullanılmaya baslanan alüminyum magnezyum alasımlarından 5754-O alasımının 60o’lik V sekilli kalıpta geri esneme davranısı incelenmistir. Malzemelere % 1, 3, 5, 7, 9 ve 11’lik ön gerilmeler uygulayarak malzemelerin akma noktaları degistirilmis ve bu ön gerilmelerin geri esneme üzerindeki etkileri deneysel olarak incelenmistir. Ayrıca çalısmalar ETA/Dynaform sac sekillendirme simülasyon programında analiz edilerek deneysel sonuçlarla karsılastırılmıstır. Sonuç olarak uygulanan ön gerilmenin geri esnemeye pozitif etkisi tespit edilememistir. Sonlu elemanlar programıyla yapılan simülasyonların deney sonuçlarına göre kabul edilebilir yakınlıkta oldugu görülmüstür.

The investigation of prestraining on springback behavior of 5754-O Al-Mg alloy experimentally and finite element model

In this study, springback behavior of 5754-O from aluminum magnesium alloys which is started to use extensively in automotive industry was investigated at 60o V shaped die. The yield point of the material was changed by performing prestrainings about 1, 3, 5, 7, 9, 11 % and the effects of these prestrainings on springback behavior of the material are investigated experimentally. Besides that these studies were analyzed by using ETA/Dynaform sheet metal forming simulation program and compared with experimental results. Results show that the prastraining does not have positive effects on springback. The results of finite element simulations are acceptable far from the experimental results.

___

  • 1. Naka, T.,Yoshida F., 1999, Deep drawability of type 5083 aluminium-magnesium alloy sheet under various conditions of temperature and forming speed, J Mater Process Technol, 89-90, 19-23
  • 2. Keum, Y.T., Han, B.Y., 2002, Springback of FCC sheet in warm forming, Journal of Ceramic Processing Research, 3, 159-165.
  • 3. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, 2000, Recent development in aluminium alloys for the automotive industry, Mat Sci Eng A, 280, 37-49.
  • 4. I. N. Fridlyander, V. G. Sister, O. E. Grushko, V. V. Berstenev,L. M. Sheveleva, and L. A. Ivanova, 2002, Aluminum alloys: Promising materials in the automotive industry, Met Sci Heat Treat, 44, 365- 370.
  • 5. U. Mildenberger, A. Khare, 2000, Planning for an environment-friendly car. Technovation, 20, 205- 214.
  • 6. Li KP, Carden WP, Wagoner RH. 2002, Simulation of springback. Int Jnl of Mech Sci., 44, 103-122.
  • 7. Gan W, Wagoner RH. 2004, Die design method for sheet springback. Int Jnl of Mech Sci., 46, 1097- 1113.
  • 8. Carden WD, Geng LM, Matlock DK, Wagoner R.H. 2002, Measurement of springback. Int Jnl of Mech Sci., 44, 79-101.
  • 9. Iwata, N., Tutamori, H., Suziki, N., Murata, A., numerical prediction of springback behavior of stamped metal sheets, R&D Review of Toyota CRDL vol. 39, No:2
  • 10. Hai Yan Yu, 2008, Variation of elastic modulus during plastic deformation and its influence on springback, Journal of Materials and Design, In Press.
  • 11. Kim S.H., Koc,M., 2008. Numerical investigations on springback characteristics of aluminum sheet metal alloys in warm forming conditions, J Mater. Proces. Technol, 204,370-383
  • 12. Esat V., Darendeliler H., Gokler I. M., 2002, Finite element analysis of springback in bending of aluminium sheets, Materials and Design 23, 223-229.
  • 13. Barlat, F., Lian, J., 1989. Plastic Behavior and Stretchability of Sheet Metals. Part I. A yield function for orthotropic sheets underplane stress conditions. Int. J. Plast. 5, 51–66.
  • 14. P. Vedoya, A.Pochettino, R. Penelle 1988, Plastic Anisotropy of Titanium, Zirconium and Zircolay 4thin sheets, Textures and Microstructures Vol. 8 & 9, pp 601-610.