EXPLORING CONSUMERS' PERCEPTIONS OF AUTOMOBILE BRANDS IN TURKEY THROUGH MULTIDIMENSIONAL SCALING

Bu çalışmanın amacı Türkiye'deki tüketicilerin otomobil markalarına yönelik tercihlerinin araştırılmasıdır. Tüketicilerin otomobil marka tercihlerini belirlemek için, tüketicllerin tercih değerlendirmelerini çok boyutlu bir yapılandırma için geometrik uzaklıklara çeviren Çok Boyutlu Ölçekleme Algoritmalarından ALSCAL ve diğer tamamlayıcı teknikler olan PREFMAP ve PROFIT uygulanmıştır. Çalışmanın örneklemini otomobil sahibi olan veya otomobil kullanma şansına sahip olan veya oto galerilerine giden tüketiciler oluşturmaktadır. Çalışmanın temel sonuçları şu şekildedir: 1) Tüketicilerin otomobil markası tercihlerinde önemli olan iki özellik güvenlik ve reklam kampanyalarıdır 2) Mercedes bu her iki boyutta da iyi olarak algılanmıştır ve analiz sonucunda elde edilen ideal nokta da Mercedes markasına işaret etmektedir.

EXPLORING CONSUMERS' PERCEPTIONS OF AUTOMOBILE BRANDS IN TURKEY THROUGH MULTIDIMENSIONAL SCALING

The purpose of this study is to investigate the consumers' preferences towards various automobile brands in Turkey. Multidimensional Scaling (MDS) algorithm known as ALSCAL and a number of other complementary techniques (PREFMAP and PROFITj is performed to transform consumers' preference evaluations into geometric distance for a multidimensional configuration for studying the subjects' perception of automobile brands. Subjects are sampled from consumers who use or have an opportunity to use cars, and who goes to car galleries. The main results of this studyare summarized as follows: (1) safety and advertising campaigns are the two important attributes in consumers' auto brand preferences (2) Mercedes perceivedfavorably in both dimensions and the ideal point is directed at the location of Mercedes. 

___

  • Allyn, B. and V.R. Rao (1972), Applied Multidimensional Scaling: A Comparisonof
  • Approaches and Algoritlıms. New York: Holt, Rinehart, and Winston Cooper, L.G. (1983), "A Review of Multidimensional Scaling in Marketing Research," Applied Psychological Measurement, 7 (4), 427-50.
  • Carroll, J. D. and Paul E. Green (1997), "Psychometric Methods in Marketing Research: Part 11, Multidimensional Scaling," Journal of Marketing Research, 34 (May), 193-204.
  • Chang, II and Carroll, lD. (1989a), "How to Use PREFMAP - A Program that Relates Preference Data to Multidimensional Scaling Solutions," in P.E. Green, F.J. Carmone, and S.M. Smith (eds.), Multidimensional Scaling: Concepts and Applications: 303-317. Newton, MA: Allyn and Bacon.
  • Chang, lJ (1989b), "How to Use PROFIT - A Computer Program for Property Fitting by Optimizing Nonlinear or Linear Correlation," in P.E. Green, F.l Carmone, and S.M. Smith (eds.), Multidimensional Scaling: Concepts and Applications: 318-331. Newton, MA: Allyn and Bacon.
  • Green, P. E. (1975), "Marketing Applications of MDS: Assessment and Outlook, " Journal of Marketing, 39 (January), 24-31
  • Green, FJ. Carmone Jr., and S.M. Smith (1989), Multidimensional Scaling: Concepts and Applications. Boston: j
  • Kruskal, J.B. (1964a), "Multidimensional Scaling for Optimizing a Goodness of Fit Metric to a Nonmetric Hypothesis," Psychometrika, 29: 1-27.
  • K.ruskal, LB. (l964b), "Xonmetric Multidimensional Scaling: A :'\umerical Method," Psychometrika, 29:115-129.
  • K.ruskal, lB., and Carroll , J.D. (1969), "Geornetrical Models and Badness-of-Fit Functions," in P.R. Krishnaiah (ed.), Multivariate Analysis, 2: 639-671. "\"ew York: Academic Press.
  • Lattin, lM., Carroll , J.D., and Green, P.E. (2003), Analyzing Multivariate Data. Pacific Grove: Brooks/Cole.
  • Wind, Y. (1982), Product Policy: Concepts, Methods, and Strategy. Reading, MA: Addison Wesley.
  • Young, F.W. and Harris, D.F. (1990), "Multidimensional Scaling: Procedure ALSCAL," in Ll.Norusis (ed.), SPSS Base System User's Guide: 396-461. Chicago, IL: SPSS Ine. Reprinted in J.J. Norusis (ed.), SPSS Professional Statistics, (1994): 155-222. Chicago, IL: SPSS Ine.