Katı Faz Fermantasyon Tekniği ile Bacillus circulans ATCC 4516’dan Ekstrasellüler βGalaktosidaz Üretimi

Çoğu mikrobiyal enzim, derin fermantasyonu ile üretilmesinerağmen, katı faz fermantasyonu (KFF) ile tarımsal atıkların substratolarak kullanılmasıyla enzimlerin üretimi daha ekonomik hale gelir.Enzim üretim sürecini KFF açısından kayda değer ölçüde ucuz halegetirmek için, maliyeti düşük substratların kullanımı büyük ilgigörmektedir. Bu çalışmada, KFF yönteminde substrat olarak pirinçkepeği kullanılarak Bacillus circulans ATCC 4516’dan βgalaktosidaz üretimi ve enzim üretimine etki eden bazıparametrelerin etkisi incelendi. İnkübasyon zamanı, inkübasyonsıcaklığı, inokülüm seviyesi, başlangıç pH’sını içeren belirlifermantasyon parametreleri ayrı ayrı incelendi. Maksimummiktarda β-galaktosidaz üretimi; %35 inokülüm oranı, pH 7.5,37°C'de ve 48. saatte elde edildi. Ayrıca fermantasyon ortamınaçeşitli karbon ve azot kaynakları eklenerek β-galaktosidaz üretimiüzerine etkisi incelendi. Elde edilen sonuçlara göre ortama eklenenkarbon ve azot kaynakları enzim üretimini baskıladı. Sonzamanlarda endüstriyel önemi olan enzimlerin daha ekonomik birşekilde üretilmesine yönelik çalışmalara olan ilgi artmaktadır. Eldeedilen sonuçlara göre pirinç kepeği substrat olarak kullanılarakBacillus circulans ATCC 4516’dan düşük maliyetle β-galaktosidazenzimi üretilebilir.

Solid State Fermentation for Production of Extracellular β-Galactosidase from Bacillus circulans ATCC 4516

Although most microbial enzymes are produced by submerged fermentation, the use of agricultural wastes as substrates in solid state fermentation (SSF) makes the production of enzymes more economical. The use of economic substrates is of great interest for making the enzyme production process significantly cheaper for SFF. The aim of this study was to investigate the effect of some parameters on the production of β-galactosidase from Bacillus circulans ATCC 4516 using rice bran as substrate in solid state fermentation (SFF) method. Certain fermentation parameters involving incubation time, incubation temperature, inoculum level and initial pH were studied separately. Maximal amount of βgalactosidase production was obtained at 35% inoculum level, at initial pH of 7.5, at 37ºC over 48 h. In addition, various carbon and nitrogen sources were added to fermentation medium and the effect on β-galactosidase production was investigated. According to the results, carbon and nitrogen sources which added to the environment suppressed the enzyme production.

___

  • Ahmed SA, 2008. Optimization of production and extraction parameters of Bacillus megaterium levansucrase using solid-state fermentation. Journal of Applied Sciences Research, 4(10): 1199- 1204.
  • Amissah JGN, Ellis WO, Oduro I, Manful JT, 2003. Nutrient composition of bran from new rice varieties under study in Ghana. Food Control. 14(1): 21-24.
  • Baysal Z, Uyar F, Aytekin Ç, 2003. Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hotspringwater. Process Biochemistry. 38(12): 1665- 1668.
  • Chapla D, Divecha J, Madamwar D, Shah D, 2010. Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochemical Engineering Journal, 49(3): 361-369.
  • Coulier L, Timmermans J, Bas R, Van Den Dool R, Haaksman I, Klarenbeek B, Slaghek T, Van Dongen W, 2009. In-depth characterization of prebiotic galacto-oligosaccharides by a combination of analytical techniques. Journal of Agriculture Food Chemistry, 57(18): 8488-8495.
  • Domingues L, Oliveira C, Castro I, Lima N, Teixeira JA, 2004. Production of β-galactosidase from recombinant Saccharomyces cerevisiae grown on lactose. Journal of Chemical Technology Biotechnology, 79(8): 809-815.
  • Das B, Roy AP, Bhattacharjee S, Chakraborty S, Bhattacharjee C, 2015. Lactose hydrolysis by βgalactosidase enzyme: optimization using response surface methodology. Ecotoxicology and Environmental Safety, 121: 244–252.
  • Finocchiaro T, Olson NF, Richardson T, 1980. Use of immobilized lactase in milk systems. Advanced in Biochemical Engineering, 15: 71-88.
  • Furlan SA, Schneider ALS, Merkle R, Carvalho-Jonas MF, Jonas R, 2000. Formulation of a lactose-free, low-cost culture medium for the production of β-Dgalactosidase by Kluyveromyces marxianus. Biotechnology Letters, 22(7): 589-593.
  • Geiger B, Nguyena HM, Weniga S, Nguyena HA, Lorenza C, Kittl R, Mathiesend G, Eijsink VGH, Haltricha D, Nguyena TH, 2016. From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus, Biochemical Engineering Journal, 116: 45-53
  • Holker U, Lenz J, 2005. Solid-state fermentation-are there any biotechnological advantages? Current Opinion Microbiology, 8(3): 301-306.
  • Hsu CA, Yu RC, Chou CC, 2005. Production of βgalactosidase by Bifidobacteria as influenced by various culture conditions. Graduate International Journal of Food Microbiology, 104(2): 197-206.
  • Kashyap P, Sabu A, Pandey A, Szakas G, Soccol CR, 2002. Extracellular L-glutaminase production by Zygosaccharomyces rouxii under solid state fermentation. Process Biochemistry, 38(3): 307- 312.
  • Konsoula Z, Liakopoulou-Kyriakides M, 2007. Coproduction of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates. Bioresource Technology, 98(1): 150-157.
  • Kumar CG, Takaki H, 1999. Microbial alkaline proteases: from a bio-industrial point of view. Biotechnology Advances, 17(7): 561-594.
  • Kunamneni A, Permaul K, Singh S, 2005. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. Journal of Bioscience Bioengineering, 100(2): 168- 171.
  • Latifian M, Hamidi-Esfahani Z, Barzegar M, 2007. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresource Technology, 98(18): 3634-3637.
  • Lazim H, Mankai H, Slama N, Barkallah I, Limam F, 2009. Production and optimization of thermophilic alkaline protease in solid-state fermentation by Streptomyces sp. CN902. Journal of Industrial Microbiology and Biotechnology, 36(4): 531-537.
  • Liua Y, Chenb Z, Jianga Z, Yanb Q, Yang S, 2017. Biochemical characterization of a novel βgalactosidase from Paenibacillus barengoltzii suitable for lactose hydrolysis and galactooligosaccharides synthesis. International Journal of Biological Macromolecules 104:1055- 1063.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, 1951. Protein measurement with the folin-phenol reagents. Journal of Biological Chemistry, 48: 17- 25.
  • Manera OP, Ores JC, Ribeiro VA, Burkert CAV, Kalil SJ, 2008. Optimization of the culture medium for the production of β-galactosidase from Kluyveromyces marxianus CCT 7082. Food Technology and Biotechnology, 46(1): 66-72.
  • Mahoney RR, 1998. Galactosyl-oligosaccharide formation during lactose hydrolysis: a review. Food Chemistry, 63(2): 147-154.
  • Mukesh Kumar DJ, Sudha M, Devika S, Balakumaran MD, Ravi Kumar M, Kalaichelvan PT, 2012. Production and Optimization of βgalactosidase by Bacillus Sp. MPTK 121, Isolated from Dairy Plant Soil. Annals of Biological Research, 3(4): 1712-1718.
  • Murthy PS, Naidu MM, Srinivas P, 2009. Production of α-amylase under solid-state fermentation utilizing coffee waste. Journal of Chemical Technology and Biotechnology, 84(8): 1246-1249.
  • Ng IS, Li CW, Chan SP, Chir JL, Chen PT, Tong CG, Yu SM, David Ho TH, 2010. High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresource Technology, 101(4): 1310-1317.
  • Nizamuddin S, Sridevi A, Narasimha G, 2008. Production of β-galactosidase by Aspergillus oryzae in solid-state fermentation. African Journal of Biotechnology, 7(8): 1096-1100.
  • Nor ZM, Tamer MI, Mehrvar M, Scharer JM, MooYoung M, Jervis EJ, 2001. Improvement of intracellular β-galactosidase production on fedbatch culture of Kluyveromyces fragilis. Biotechnolgy Letters, 23(11): 845-849. Pandey A, 2003. Solid-state fermentation. Biochemical Engineering Journal, 13 (2-3): 81-84.
  • Panesar PS, Panesar R, Singh RS, Kennedy JF, Kumar H, 2006. Review Microbial production, immobilization and applications of β-Dgalactosidase. Journal of Chemical Technololgy Biotechnology, 81(4): 530-543.
  • Ramírez Matheus AO, Rivas N, 2003. Production and partial characterization of β-galactosidase from Kluyveromyces lactis grown in deproteinized whey. Archivos Latinoamericanos de Nutrición, 53(2): 194-201.
  • Rycroft CE, Jones MR, Gibson GR, Rastall RA, 2001. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. Journal of Appied Microbiology, 91(5): 878-887.
  • Rhimi M, Boisson A, Dejob M, Boudebouze S, Maguin E, Haser R, Aghajari N, 2010. Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of a β-galactosidase from the dairy Streptococcus thermophilus LMD9 strain. Research in Microbiology, 161(7): 515-525.
  • Singhania RR, Patel AK, Soccol CR, Pandey A, 2009. A. Recent advances in solid state fermentation. Biochemical Engineering Journal, 44(1): 13-18
  • Vasiljevic T, Jelen P, 2001. Production of βgalactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bacteria. Innovative Food Science and Emerging Technologies, 2(2): 75-85.
  • Vetere A, Paoletti S, 1998. Separation and characterization of three β-galactosidases from Bacillus circulans. Biochimica et Biophysica Acta, 2: 223-231.
KSÜ Tarım ve Doğa Dergisi-Cover
  • ISSN: 2619-9149
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2018
Sayıdaki Diğer Makaleler

Tuz Stresinin Yem Bezelyesi (Pisum sativum ssp. arvense L.) Seçilmiş Genotipinde Çimlenme ve Fide Gelişimi Üzerine Etkileri

GÜRKAN DEMİRKOL, Nuri YILMAZ, Özlem ÖNAL AŞCI

Bazı Bitki Ekstraktlarının Kök-Ur Nematodu Meloidogyne arenaria (Neal, 1889) Chitwood, 1949 (Tylenchida: Meloidogynidae)’nın Kontrolünde Kullanılabilme Potansiyeli

GÖKHAN AYDINLI, Fadime ŞEN, SEVİLHAN MENNAN

Isıl Yabancı Ot Kontrolü İçin Özel İmal Edilen Gaz Memelerinin Performansı

Selçuk ARSLAN, Çağdaş TURALOĞLU, NİHAT TURSUN

Katı Faz Fermantasyon Tekniği ile Bacillus circulans ATCC 4516’dan Ekstrasellüler βGalaktosidaz Üretimi

Besi SERİN, Nurullah AKCAN

Selective Cytotoxic Effect of Dorycnium pentaphyllum Extract on Human Breast, Liver, and Lung Cancer Cells

SELİM DEMİR, İbrahim TURAN, Sema MISIR, Yüksel ALİYAZICIOĞLU

Comparison of Conventional PCR Method With Cefoxitin Disc Diffusion, Automated System and Isolation on Chromogenic MRSA Medium Methods for The Detection of Meticillin Resistance In Staphylococcus aureus Strains Isolated From Various Clinical Specimens

Esra KAYA, Murat ARAL, ZERİFE ORHAN, Kezban Tülay YALÇINKAYA, Hacer UĞURLU

Determination of the Species of Tephritidae family (Diptera) on Cherry Orchards in Adana Province and Surroundings in Turkey

Burcu Özbek ÇATAL, Asime Filiz ÇALIŞKAN KEÇE, Mehmet Rıfat ULUSOY

Sulama Kanal Çeşitleri ve Uzunluklarının Sulama Performans Göstergelerine Etkisi

Si̇nan KARTAL, Hasan DEĞİRMENCİ, Fırat ARSLAN

Sulama Performansının Değerlendirilmesi: Kırıkhan Sulama Birliği Örneği

Mehmet GENÇOĞLU, Hasan DEĞİRMENCİ

Çeşitli Klinik Örneklerden Izole Edilen Staphylococcus aureus Suşlarında Metisilin Direncinin Araştırılmasında Konvansiyonel PCR Yöntemi ile Sefoksitin Disk Difüzyon, Otomatize Sistem ve Chromogenic MRSA Agar Yöntemlerinin Karşılaştırılması

Murat ARAL, Hacer UĞURLU, Esra KAYA, Kezban Tülay YALÇINKAYA, Zerife ORHAN