Determination of Chemical Composition and Fumigant Insecticidal Activities of Essential Oils of Some Medicinal Plants Against the Adults of Cowpea Weevil, Callosobruchus maculatus

Chemical composition and fumigant insecticidal activities ofessential oils obtained from oregano ( Origanum syriacum L.),lavender ( Lavandula angustifolia L.), sage ( Salvia officinalis L.,),fennel ( Foeniculum vulgare Mill.) and laurel ( Laurus nobilis L.)plants were investigated against the adults of cowpea weevil,Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Based onGC-MS analysis, total number of compounds determined in oregano,lavender, sage, fennel and laurel essential oils were 25, 33, 23, 23,42, respectively. Carvacrol (66.66%), trans -anethol (79.17%), 1,8-cineole (50.0%), camphor (30.46%) and linalyl acetate (35.66%) werefound as the most abundant compounds, respectively. Bioassayresults revealed that essential oils, at 30.0 or 40.0 μg ml -1 air,resulted in 100% adult mortality of C. maculatus . Insecticidalactivity was increased in response to increased concentration ofessential oil. Among the essential oils tested, oregano showed thehighest fumigant toxicity at relatively lower concentration (30.0 μgml -1 ). Complete adult mortality (100%) caused by fennel, laurel, sageand lavender essential oils at the concentrations of 40.0 μg ml -1 air.The LC 50 and LC 90 values for each essential oil were estimated byusing probit analysis. The lowest LC 50 value was estimated for sageessential oil (8.79 μg ml -1 ) followed by oregano (11.17 μg ml -1 ),lavender (11.64 μg ml -1 ), laurel (13.59 μg ml -1 ) and fennel (17.46 μgml -1 ), respectively. The results revealed that plant essential oilsmight be used in research aiming the development of newenvironmental friendly control agents against stored-product pestssuch as cowpea weevil.

Bazı Tıbbi Bitkilerden Elde Edilen Uçucu Yağların Kimyasal Bileşenlerinin Belirlenmesi ve Börülce Tohum Böceği, Callosobruchus maculatus Erginlerine Karşı Fümigant İnsektisidal Aktivitelerinin Belirlenmesi

Origanum ( Origanum syriacum L.), lavanta ( Lavandula angustifolia L.), adaçayı ( Salvia officinalis L.), rezene ( Foeniculum vulgare Mill.) ve defne ( Laurus nobilis L.) bitkilerinden elde edilen uçucu yağların kimyasal bileşenleri ve fümigant insektisit etkinliği bakla tohum böceği Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) erginlerine karşı araştırılmıştır. GC-MS analiz sonucuna göre, origanum, lavanta, adaçayı, rezene ve defne bitki uçucu yağlarında sırasıyla 25, 33, 23, 23, 42 adet bileşen belirlenmiştir. Carvacrol (%66.66), trans -anethol (%79.17), 1,8- cineole (%50.0), camphor (%30.46) ve linalyl acetate (%35.66) bu bitkilerin uçucu yağlarında ana bileşenler olarak belirlenmiştir. Biyolojik etkinlik çalışmaları tüm uçucu yağların 30.0 ve 40.0 μg ml - 1 hava konsantrasyonları C. maculans erginleri üzerinde %100 ölümlere neden olduğunu göstermiştir. Uçucu yağların insektisit etkinliği artan konsantrasyonlara bağlı olarak artış göstermiştir. Test edilen uçucu yağlar arasında, origanum uçucu yağı daha düşük konsantrasyonda (30.0 μg ml -1 hava) en yüksek etkinlik göstermiştir. Rezene, defne, adaçayı ve lavanta uçucu yağları ise 40.0 μgml -1 hava konsantrasyonunda %100 ergin ölümlerine neden olmuştur. Her bir uçucu yağın LC 50 ve LC 90 değerleri probit analizi ile belirlenmiştir. En düşük LC 50 değeri adaçayı (8.79 μg ml -1 ) için belirlenmiş olup, bunu sırasıyla origanum (11.17 μg ml -1 ), lavanta (11.64 μg ml -1 ), defne (13.59 μg ml -1 ) ve rezene (17.46 μg ml -1 ) uçucu yağları takip etmiştir. Elde edilen sonuçlar bitki uçucu yağlarının börülce tohum böceği gibi depolanmış ürün zararlılarının kontrolünde yeni çevre dostu aktif maddelerin araştırıldığı çalışmalarda kullanılabileceğini göstermiştir.

___

Abbott WS 1925. A method of computing the effectiveness of an insecticides. J. Econ. Entomol. 18: 265-267

Abeywickrama K, Adhikari AACK, Paranagama P, Gamage CSP 2006. The efficacy of essential oil of Alpinia calcarata (Rosc.) and its major constituent, 1,8-cineole, as protectants of cowpea against Callosobruchus maculatus (F.) (Coleoptera : Bruchidae). Can. J. Plant Sci., 86: 821-827.

Adams RP 2007. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy Allured Books. Carol Stream, IL. 698 pp.

Ahn YJ, Lee SB, Lee HS, Kim GH 1998. Insecticidal and acaricidal activity of carvacrol and beta- thujaplicine derived from Thujopsis dolabrata var. hondai sawdust. J. Chem. Ecol., 24: 81-90.

Bakkali F, Averbeck S, Averbeck D, Waomar M 2008. Biological effects of essential oils—a review. Food Chem. Toxicol., 46: 446–475.

Boulogne I, Petit P, Ozier-Lafontaine H, Desfontaines L, Loranger-Merciris G 2012. Insecticidal and antifungal chemicals produced by plants: a review. Environ. Chem. Lett., 10: 325-347.

Brisibe EA, Adugbo SE, Ekanem U, Brisibe F, Figueira GM 2011. Controlling bruchid pests of stored cowpea seeds with dried leaves of Artemisia annua and two other common botanicals. African J. Biotechnol. 10: 9586–9592.

Caswell GH 1984. The value of the pod in protecting cowpea seeds from attack by bruchid beetles. Samaru J. Agric. Res. 2: 49–55.

Davis PH 1988. Flora of Turkey and the East Aegean Islands. Vol. I-X, Edinburgh Univ. Pres. (1965- 1988).

Ebadollahi A, Nouri-Ganbalani G, Hoseini SA, Sadeghi GR 2012. Insecticidal activity of essential oils of five aromatic plants against Callosobruchus maculatus F. (Coleoptera: Bruchidae) under laboratory conditions. J. Essent. Oil Bearing Plants 15: 256-262.

El-Wakeil NE 2013. Botanical pesticides and their mode of action. Gesunde Pflanzen 65:125-149.

Erler F, Uluğ I, Yalçinkaya B 2006. Repellent activity of five essential oils against Culex pipiens . Fitoterapia, 77: 491-494.

Erler F, Tunç İ 2005. Monoterpenoids as fumigants against greenhouse pests: toxic, development and reproduction-inhibiting effects. Z. Pflanzenk. Pflanzen. (Journal of Plant Diseases and Protection), 112: 181-192.

Finney DF 1971. Probit analysis, 3rd edn. University Press, Cambridge, p 333

Gusmao NMS, de Oliveira JV, Navarro DMDF, Dutra KA, da Silva WA, Wanderley MJA 2013. Contact and fumigant toxicity and repellency of Eucalyptus citriodora Hook., Eucalyptus staigeriana F., Cymbopogon winterianus Jowitt and Foeniculum vulgare Mill. essential oils in the management of Callosobruchus maculatus (FABR.) (Coleoptera: Chrysomelidae, Bruchinae). J. Stored Prod. Res. 54: 41-47.

Hamraoui A, Regnault-Roger C 1997. Monoterpenoids insecticidal effect comparison on two phytophagic insects, Ceratitis capitata and Rhopalosiphum padi . Acta Botanica Gallica 144: 413-417.

Hashemi SM, Hosseini B, Estaji A, Hashemi SM, Hosseini B, Estaji A 2013. Chemical composition and insecticidal properties of the essential oil of Salvia leriifolia Benth (Lamiaceae) at two developmental stages. J. Essent. Oil Bearing Plants, 16: 806-816.

Houghton PJ, Ren Y, Howes MJ 2006. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 23: 181–199.

Ileke K, Olotuah O 2012. Bioactivity of Anacardium occidentale (L) and Allium sativum (L) powders and oils extracts against cowpea bruchid, Callosobruchus maculatus (Fab.) (Coleoptera: Chrysomelidae). Int. J. Biol. 4: 96–103.

Isman MB 2000. Plant essential oils for pest and disease management. Crop Protection 19: 603–608.

Isman MB, Miresmailli S, Machial C 2011. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 10: 197–204.

Kedia A, Prakash B, Mishra PK, Singh P, Dubey NK 2015. Botanicals as eco-friendly biorational alternatives of synthetic pesticides against Callosobruchus spp. (Coleoptera: Bruchidae)-a review. J. Food Sci. Technol-Mysore 52: 1239-1257.

Kim DH, Ahn YJ 2001. Contact and fumigant activities of constituents of Foeniculum vulgare fruit against three coleopteran stored-product insects. Pest Manag. Sci. 57: 301-306.

McLafferty FW, Staufer DB 1989. The Willey N.B.S. Registry of mass spectral data. New York: John Wiley and Sons.

Mkenda PA, Stevenson PC, Ndakidemi P, Farman DI, Belmain SR 2015. Contact and fumigant toxicity of five pesticidal plants against Callosobruchus maculatus (Coleoptera: Chrysomelidae) in stored cowpea ( Vigna unguiculata ). Int. J.Tropical Insect Sci. 35: 172–184.

Nyamador WS, Ketoh GK, Amevoin K, Nuto Y, Koumaglo HK, Glitho IA 2010. Variation in the susceptibility of two Callosobruchus species to essential oils. J. Stored Prod. Res. 46: 48–51

Panezail GM, Jabeen, R, Khetran M, Ijaz A, Rafeeq M, Bukhari FA, Awan MA, Hameed T, Tariq MM 2015. Insecticidal action of three plants extracts against cowpea weevil, Callosobruchus maculatus (F) and bean weevil, Acanthoscelides obtectus Say. Pak. J. Zool. 47: 899-902.

Park CG, Shin E, Kim J 2016. Insecticidal activities of essential oils, Gaultheria fragrantissima and Illicium verum , their components and analogs against Callosobruchus chinensis adults. J. Asia- Pas. Entomol. 19: 269-273.

Pascual-Villalobos MJ 1996. Evaluation of the insecticidal activity of Chrysanthemum coronarium L. plant extracts. Bol San Veg Plagas 22: 411-420.

Perez SG, Ramos-Lopez MA, Zavala-Sanchez MA, Cardenas-Ortega NC 2010. Activity of essential oils as a biorational alternative to control coleopteran insects in stored grains. J. Medicinal Plants Res. 4: 2827-2835.

Rattan RS 2010. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protect. 29: 913-920.

Regnault-Roger C, Hamraoui A 1995. Fumigant toxic activity and reproductive inhibition induced by monoterpenes on Acanthoscelides obtectus (Say) (Coleoptera), a bruchid of kidney bean ( Phaseolus vulgaris L.). J. Stored Prod. Res. 31: 291–299.

Rozman V, Kalinovic I, Korunic Z 2007. Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects. J. Stored Prod. Res. 43: 349–355.

Sertkaya E, Kaya K, Soylu S 2010. Chemical compositions and insecticidal activities of the essential oils from several medicinal plants against the cotton whitefly, Bemisia tabaci . Asian J. Chem. 22: 2982-2990.

Sertkaya E 2013. Fumigant toxicity of the essential oils from medicinal plants against bean weevil, Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Asian J. Chem. 25: 553-555.

Shukla RS, Singh P, Prakash B, Kumar A, Mishra PK, Dubey NK 2011. Efficacy of essential oils of Lippia alba (Mill.) N.E. Brown and Callistemon lanceolatus (Sm.) Sweet and their major constituents on mortality, oviposition and feeding behaviour of pulse beetle, Callosobruchus chinensis L. J Sci Food Agric 91: 2277–2283.

Soylu EM, Soylu S, Kurt S 2006. Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans . Mycopathologia 161: 119–128.

Soylu S, Yigitbas H, Soylu EM, Kurt S 2007. Antifungal effects of essential oils from oregano and fennel on Sclerotinia sclerotiorum . J. Appl. Microbiol. 103: 1021–1030.

Soylu S, Evrendilek GA, Soylu EM 2009. Chemical compositions and antibacterial activities of bitter fennel ( Foeniculum vulgare Mill. var. vulgare) and dill ( Anethum graveolens L.) essential oils against the growth of food-borne and seed-borne plant pathogenic bacteria. Italian J. Food Sci. 21: 347- 355.

Soylu EM, Kurt Ş, Soylu, S 2010. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea . Int. J. Food Microbiol. 143:183- 189.

Suthisut D, Fields PG, Chandrapatya A 2011. Contact toxicity, feeding reduction, and repellency of essential oils from three plants from the ginger family (Zingiberaceae) and their major components against Sitophilus zeamais and Tribolium castaneum . J. Econ. Entomol. 104: 1445-1454.

Toudert-Taleb K, Hedjal-Chebheb M, Hami H, Debras JF, Kellouche A 2014. Composition of essential oils extracted from six aromatic plants of Kabylian origin (Algeria) and evaluation of their bioactivity on Callosobruchus maculatus (Fabricius, 1775) (Coleoptera: Bruchidae). African Entomol. 22: 417- 427.

Tunç İ, Erler, F 2003. Repellency and repellent stability of essential oil constituents against Tribolium confusum . Z. Pflanzenk. Pflanzen. (Journal of Plant Diseases and Protection), 110: 394-400