Biyolojik Azot Giderim Prosesinde Sınırlı Amonyum Değişiminin Etkisi

Bu çalışmanın temel amacı, biyolojik azot gideriminden sorumlu heterotrofik denitrifikasyon prosesinde değişen sınırlı amonyum konsantrasyonlarının etkisini araştırmaktır. Sistem performansı 100 mg NO3- L-1 sabit giriş nitrat konsantrasyonunda 20 mgNH4 + N konsantrasyonları ile değerlendirilmiştir. Bu çalışmanın sonuçları, amonyum konsantrasyonlarındaki değişimin nitrat giderme etkinliğini belirgin bir şekilde etkilememesine rağmen, reaksiyonun sonunda kalıntı amonyum bulunmaması nedeniyle 5 mg L-1'lik giriş amonyum-azotu konsantrasyonunda toplam azot giderim veriminin maksimum seviyeye ulaştığını göstermiştir. Buna ek olarak, nitrat tüketim hızı giriş amonyum konsantrasyonun sınırlanması ile artış eğiliminde iken, amonyum bulunmayan işletim koşulunda nitrat tüketim hızı, 85,4 mg NO3--N gMLSS-1 sa-1olarak maksimum seviyeye ulaşmıştır. Maksimum amonyum tüketim oranı, 5 mgL1'lik amonyum azotuyla, 18,4 mg NH4+-N gMLSS sa-1 olarak elde edilmiştir

The Effect of Limited Ammonium Variations on Biological Nitrogen Removal Process

The aim of this study was to investigate the effect of varying limited ammonium concentrations on the heterotrophic denitrification process responsible for biological nitrogen removal. The system performance was evaluated with gradually decreasing ammoniumnitrogen concentrations from 20 mgNH4+-N L-1to inexistent ammonium inlet at 100 mgNO3- L-1. Results of this study indicated that the total nitrogen removal efficiency reached maximum level at influent ammonium-nitrogen of 5 mg L-1due to the absence of residual ammonium at the end of the reaction, although varying ammonium concentrations did not noticeably affect the nitrate removal efficiency. Additionally, nitrate consumption rate had a tendency to increase with the limitation of influent ammonia and the nitrate consumption rate reached maximum level at operational condition where ammonium was not present, corresponding to 85.4 mgNO3--N gMLSS-1h-1. The maximum ammonium consumption rate have attained with influent ammonium-nitrogen of 5 mg L-1, being 18.4 mgNH4+-N gMLSS-1h-1

___

  • Arahman N, Mulyati S, Lubis MR, Takagi R, Matsuyama H 2017. Removal performance of NO3 − ion from groundwater by electrodialysis. In B. Kristiawan, M. Anwar, A. T., Wijayanta, S. Hadi, D. Danardono, D. Ariawan (Eds.), AIP Conference Proceedings (Vol. 1788, No. 1, p:030090). AIP Publishing.
  • Burger M, Jackson LE 2003. Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry, 35(1): 29-36.
  • Burgin AJ, Hamilton SK 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment, 5(2): 89-96.
  • Cai T, Park SY, Li Y 2013. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew. Sustain Energy. Rev, 19: 360–369.
  • Chu LB,Wang JL 2013. Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source. Chemosphere 91 (9):1310–1316.
  • Dabkowski B 2008. Applying oxidation reduction potential sensors in biological nutrient removal systems. ©Hach Company. Elazzouzi M, Haboubi K, Elyoubi MS 2017.
  • Electrocoagulation flocculation as a low-cost process for pollutants removal from urban wastewater. Chemical Engineering Research and Design, 117: 614-626.
  • Ge S, Peng Y, Wang S, Lu C, Cao X, Zhu Y 2012. Nitrite accumulation under constant temperature in anoxic denitrification process: the effects of carbon sources and COD/NO3-N. Bioresource technology, 114:137- 143.
  • Ghafari, S., Hasan, M., Aroua, M.K., 2008. Bioelectrochemical removal of nitrate from water and wastewater - a review. Bioresour. Technol. 99 (10), 3965–3974.
  • Hou M, Tang Y, Xu J, Pu Y, Lin A, Zhang L, Xiong J, Yang XJ, Wan P 2015. Nitrate reduction in water by aluminum–iron alloy particles catalyzed by copper J. Environ. Chem. Eng., 3: 2401–2407
  • Karanasios KA, Vasiliadou IA, Pavlou S, Vayenas DV 2010. Hydrogenotrophic denitrification of potable water: a review. J. Hazard. Mat. 180: (1–3), 20–37.
  • Liu H, Jiang W, Wan D, Qu J 2009. Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water. Journal of Hazardous Materials, 169(1): 23-28.
  • Lv J, Feng J, Liu Q, Xie S 2017. Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work.International Journal of Molecular Sciences,18(1): 79.
  • Machado VC 2011. Retrofitting analysis for improving benefits of A/O WWTPs considering process control aspects, Departament D’enginyeria Química Escola D’enginyeria, PhD Thesis:149s.
  • Modin O, Fukushi K, Nakajima F, Yamamoto K 2010. Nitrate removal and biofilm characteristics in methanotrophic membrane biofilm reactors with various gas supply regimes. Water Research,44:85– 96.
  • Modin O, Fukushi K, Yamamoto K 2007. Denitrification with methane as external carbon source. Water Research,41:2726-2738.
  • Ovez B 2006. Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source. Process Biochem. 41 (6): 1289–1295.
  • Panthi SR , Wareham DG 2008. The effect of arsenite on denitrification using volatile fatty acids (VFAs) as a carbon source.Journal of Environmental Science and Health, Part A,43(10):1192-1197.
  • Schipper LA, Robertson WD, Gold AJ, Jaynes DB, Cameron SC, 2010. Denitrifying bioreactors-an approach for reducing nitrate loads to receiving waters. Ecol. Eng. 36 (11):1532–1543.
  • Van Rijn JY, Tal Schreier HJ 2006. Denitrification in recirculating systems: theory and applications. Aquac. Eng. 34 (3):364–376.
  • Wang J, Chu L 2016. Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnology advances, 34(6): 1103-1112.
  • Wang JL, Kang J 2005. The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor. Process Biochem. 40 (5): 1973–1978.
  • Wang JL, Yang N 2004. Partial nitrification under limited dissolved oxygen conditions. Process Biochem. 39 (10): 1223–1229.
  • Xu J, Pu Y, Qi W, K Yang, XJ, Tang Y, Wan P, Fisher A 2017. Chemical removal of nitrate from water by aluminum-iron alloys. Chemosphere, 166: 197-202.
  • Zhao Y, Feng C, Wang Q, Yang Y, Zhang Z, Sugiura N 2011. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm–electrode reactor. Journal of hazardous materials, 192(3): 1033-1039.
KSÜ Tarım ve Doğa Dergisi-Cover
  • ISSN: 2619-9149
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2018