PUROLİTE CT169DR HETEROJEN KATALİZÖRÜ VARLIĞINDA METANOL İLE OLEİK ASİDİN ESTERİFİKASYONU

Biyodizel üretim sürecinde hammadde olarak atık yağ kaynaklarının kullanılabilmesi için esterifikasyon aşaması çoğunlukla gerekli olduğundan bitkisel ve hayvansal yağlarda en bol miktarda bulunan yağ asitlerinden biri olan oleik asit ile metanolün esterifikasyon reaksiyonunun yüksek asit konsantrasyonuna ve seçiciliğe sahip olan çevre dostu heterojen asidik iyon değiştirici reçinelerden biri olan Purolite CT169DR katalizörü varlığında parametrik incelemesi yapılmış ve sonuçta elde edilen oleik asit dönüşümleri hesaplanarak, %90,62 oleik asit dönüşümü ile reaksiyon için en uygun koşulların, oleik asit miktarı baz alınarak hesaplanmış ağırlıkça %9 katalizör miktarı, 6/1 metanol/oleik asit molar oranı ve 5 saatlik reaksiyon süresi olduğu bulunmuştur. Ayrıca reaksiyon kinetiği incelenmiş ve reaksiyonun yalancı homojen birinci dereceden kinetik modele uygunluğu gösterilmiştir.

Oleic Acid Esterification with Methanol in the Presence of Purolite CT169DR Heterogeneous Catalyst

Esterification step is mostly necessary in order to use waste oils as a feedstock in the biodiesel production process. In this study oleic acid was preferred because it is one of the most abundant fatty acid in vegetable oils and animal fats. Parametric study of the esterification reaction of oleic acid and methanol was carried out in the presence of Purolite CT169DR catalyst which is one of the environmentally friendly heterogeneous acidic ion exchange resins with high acid concentration and high selectivity. According to obtained free fatty acid conversions, most suitable conditions with 90.62% oleic acid conversion for the esterification reaction were found as 9 wt. % catalyst amounts based on the weight of oleic acid, 6/1 methanol/oleic acid molar ratio and 5 hours reaction time. Additionally, reaction kinetics were examined and the suitability of the reaction to the pseudo-homogeneous first order model was proven.

___

  • Abidin, Z. S., Saha B., 2017, Environmentally Bening Biodiesel Production from Renewable Sources”, The Water-Feed- Energy Nexus: Processes, Technologies, and Challenges, CRC Press, 333-362.
  • Alhassani, M. H., Al-Jubouri, S. M., Noori, W. O., Al-Jendeel, H. A., 2018, “Esterification Reaction Kinetics Using Ion Exchange Resin Catalyst by Pseudo-Homogenous and Eley-Ridel Models”, International Journal of Engineering (IJE) IJE TRANSACTIONS B : Applications, Cilt 31, Sayı 8, ss. 1172-1179.
  • Ali, S. H., Tarakmah, A., Merchant, S. Q., Al-Sahhaf, T., 2007, “Synthesis of esters: Development of the rate expression for the Dowex 50 Wx8-400 catalyzed esterification of propionic acid with 1-propanol”, Chem. Eng. Sci., Cilt 62, Sayı 12, ss. 3197- 3217.
  • Bai, H., Tian, J., Talifu, D., Okitsu, K., Abulizi, A., 2022, “Process optimization of esterification for deacidification in waste cooking oil: RSM approach and for biodiesel production assisted with ultrasonic and solvent”, Fuel, Cilt 318, 123697.
  • Bamoharram, F. F., Heravi, M. M., Roshani, M., Jahangir, M., Gharib, A., 2006, “Preyssler catalyst, [NaP5W30O110]14−: A green, efficient and reusable catalyst for esterification of salicylic acid with aliphatic and benzylic alcohols”, Appl. Catal., A, Cilt 302, Sayı 1, ss. 42-47.
  • Banchero, M., Gozzelino, G., 2018, “A Simple Pseudo-Homogeneous Reversible Kinetic Model for the Esterification of Different Fatty Acids with Methanol in the Presence of Amberlyst-15” Energies, Cilt 11, Sayı 7, ss. 1843-1854.
  • Cao, M., Peng, L., Xie, Q., Xing, K., Lu, M., Ji, J., 2021, “Sulfonated Sargassum horneri carbon as solid acid catalyst to produce biodiesel via esterification”, Bioresource Technology, Cilt 324, 124614.
  • Demirbas, A., 2008, “Comparison of transesterification methods for production of biodiesel from vegetable oils and fats”, Energy Convers. Manage., Cilt 49, ss. 125–130.
  • Diaz- Felix, W., Riley, M. R., Zimmt, W., Kazz, M., 2009, “Pretreatment of yellow grease for efficient production of fatty acid methyl esters” Biomass and Biorefinery, Cilt 33, Sayı 4, ss. 558-563.
  • Feng, Y., He, B., Cao, Y., Li, J., Liu, M., Yan, F., Liang, X., 2010, “Biodiesel Production using Cation-Exchange Resin as Heterogeneous Catalyst”, Bioresour. Technol., Cilt 101, Sayı 5, ss. 1518-1521.
  • Galia, A., Scialdone, O., Tortorici, E., 2011, “Transesterification of rapeseed oil over acid resins promoted by supercritical carbon dioxide”, J. of Supercritical Fluids, Cilt 56, ss. 186-193.
  • Gan, S., Ng, H. K., Chan, P. H., Leong, F. L., 2012, “Heterogeneous free fatty acids esterification in waste cooking oil using ion-exchange resins”, Fuel Process. Technol., Cilt 102, ss. 67–72.
  • Gupta, A. R., Chiplunkar, P. P., Pratap, A. P., Rathod, V. K., 2020, “Esterification of Palm Fatty Acid Distillate for FAME Synthesis Catalyzed by Super Acid Catalyst HClSO3–ZrO2”, Waste and Biomass Valorization, Cilt 12, ss. 281-292.
  • Ilgen, O., 2014, “Investigation of reaction parameters, kinetics and mechanism of oleic acid esterification with methanol by using Amberlyst 46 as a catalyst”, Fuel Process. Technol., Cilt 124, ss. 134–139.
  • Jiang, Y., Lu, J., Sun, K., Ma, L., Ding, J., 2013, “Esterification of oleic acid with ethanol catalyzed by sulfonated cation exchange resin: Experimental and kinetic studies”, Energy Convers. Manage., Cilt 76, ss. 980-985.
  • Kaur, N., Ali, A., 2015, “Lithium zirconate as solid catalyst for simultaneous esterification and transesterification of low quality triglycerides”, Appl. Catal., A, Cilt 489, ss. 193–202.
  • Khan, Z., Javed, F., Shamair, Z., Hafeez, A., Fazal, T., Aslam, A., Zimmerman, W. B., Rehman, F., 2021, “Current developments in esterification reaction: A review on process and parameters”, Journal of Industrial and Engineering Chemistry, Cilt 103, ss. 80-101.
  • Khazaai, S. N. M., Yiting, S., Rahim, M. H. A., Ibrahim, M. L., Maniam, G. P., 2021, “Application of Waste Catalyst CaO-SiO2 in the Transesterification of Palm Oil”, Malaysian Journal of Analytical Sciences, Cilt 25, Sayı 3, ss. 490-497.
  • Kitakawa, N. S., Honda, H., Kuribayashi, H., Toda, T., Fukumura, T., Yonemoto, T., 2007, “Biodiesel Production using Anionic Ion-Exchange Resin as Heterogeneous Catalyst”, Bioresour. Technol., Cilt 98, Sayı 2, ss. 416-421.
  • Lachter, E. R., Rodrigues, J. A., Teixeira, V. G., Mendonça, R. H., Ribeiro, P. S., Estupinan, S. V., 2019, Use of Ion-Exchange Resins in Alkylation Reactions. In: Inamuddin, Rangreez T., M. Asiri A. (eds) Applications of Ion Exchange Materials in Chemical and Food Industries. Springer, Cham.
  • Lam, M. K., Lee, K. T., Mohamed, A. R., 2010, “Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review”, Biotechnol. Adv., Cilt 28, Sayı 4, ss. 500-518.
  • Leyva, F., Orjuela, A., Miller, D. J., Gil, I., Vargas, J., Rodriguez, G., 2013, “Kinetics of Propionic Acid and Isoamyl Alcohol Liquid Esterification with Amberlyst 70 as Catalyst” Ind. Eng. Chem. Res., Cilt 52, ss. 18153−18161.
  • Li, X., Tong, D., Hu, C., 2015, “Efficient production of biodiesel from both esterification and transesterification over supported SO42--MoO3-ZrO2-Nd2O3/SiO2 catalysts”, J. Energy Chem., Cilt 24, Sayı 4, ss. 463–471.
  • Lilja, J., Aumo, J., Salmi, T., Murzin, D. Y., Maki- Arvela, P., Sundell, M., Ekman, K., Peltonen, R., Vainio, H., 2002, “Kinetics of esterification of propanoic acid with methanol over a fibrous polymer-supported sulphonic acid catalyst”, Applied Catalysis A: General, Cilt 228, Sayı 1-2, ss. 253-267.
  • Liu, Y., Lu, H., Nyarko, K. A., MacDonald, T., Tavlarides, L. L., Liu, S., Liang, B., 2016, “Kinetic studies on biodiesel production using a trace acid catalyst”, Catal. Today, Cilt 264, ss. 55–62.
  • Lokman, I. M., Rashid, U., Taufiq-Yap, Y. H., Yunus, R., 2015, “Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst”, Renewable Energy, Cilt 81, ss. 347-354.
  • Lou, W. Y., Zong, M. H., Duan, Z. Q., 2008, “Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts”, Bioresour. Technol., Cilt 99, Sayı 18, ss. 8752- 8758.
  • Moradi, P., Saidi, P., Najafabadi, A. T., 2021, “Biodiesel production via esterification of oleic acid as a representative of free fatty acid using electrolysis technique as a novel approach: Non catalytic and catalytic conversion”, Process Safety and Environmental Protection, Cilt 147, ss. 684-692.
  • Nandi, S., Bhattacharyya, R., Mandal, B., 2021, “Optimization and kinetics of biodiesel from jojoba (Simmondsia chinensis L. Schneider) oil”, World Scientific News, Cilt 159, ss. 108-121.
  • Olagbende, O. H., Falowo, O. A., Latinwo, L. M., Betiku, E., 2021, “Esterification of Khaya senegalensis seed oil with a solid heterogeneous acid catalyst: Modeling, optimization, kinetic and thermodynamic studies”, Cleaner Engineering and Technology, Cilt 4, ss. 100200.
  • Peng- Lim, B., Ganesan, S., Maniam, G. P., Khairuddean, M., Efendi, J., 2013, “A new heterogeneous acid catalyst for esterification: Optimization using response surface methodology”, Energy Conversion and Management, Cilt 65, ss. 392-396.
  • Pesaresi, L., Brown, D. R., Lee, A. F., Montero, J. M., Williams, H., Wilson, K., 2009, “Cs-doped H4SiW12O40 catalysts for biodiesel applications”, Appl. Catal., A, Cilt 360, Sayı 1, ss. 50-58.
  • Prasertpong, P., Shimpalee, S., Tippayawong, N., 2020, “Kinetic model for esterification of oleic acid catalyzed by a green catalyst in ethanol”, Energy Reports, Cilt 6, ss. 66-70.
  • Purolite, Product Data Sheet, https://www.purolite.com/product-pdf/CT169DR.pdf, ziyaret tarihi: 10.03.2022.
  • Salsabila, R., Perdani, M. S., Kitikawa, N. S., Hermansyah, H., 2020, “Production of methyl caffeate as an intermediate product to produce caffeic acid phenethyl ester by esterification using cation-exchange resin”, Energy Reports, Cilt 6, ss. 528-533.
  • Senoymak Tarakcı, M. I., Ilgen, O., 2018, “Esterification of Oleic Acid with Methanol Using Zr(SO4)2 as a Heterogeneous Catalyst”, Chem. Eng. Technol., Cilt 41, Sayı 4, ss. 845-852.
  • Sepulveda, J. H., Yori, J. C., Vera, C. R., 2005, “Repeated use of supported H3PW12O40 catalysts in the liquid phase esterification of acetic acid with butanol”, Appl. Catal., A, Cilt 288, Sayı 1-2, ss. 18-24.
  • Shu, Q., Yang, B., Yuan, H., Qing, S., Zhu, G., 2007, “Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+”, Catal. Commun., Cilt 8, Sayı 12, ss. 2159- 2165.
  • Sirisomboonchai, S., Abuduwayiti, M., Guan, G., Samart, C., Abliz, S., Hao, X., Kusakabe, K., Abudula, A., 2015, “Biodiesel production from waste cooking oil using calcined scallop shell as catalyst”, Energy Conversion and Management, Cilt 95, ss. 242–247.
  • Syazwani, O. N., Teo, S. H., Islam, A., Taufiq-Yap, Y. H., 2017, “Transesterification activity and characterization of natural CaO derived from waste venus clam (Tapes belcheri S.) material for enhancement of biodiesel production”, Process Safety and Environmental Protection, Cilt 105, ss. 303-315.
  • Veljković, V. B., Lekićević, S. H., Stamenković, O. S., Todorović, Z. B., Lazic, M. L., 2006, “Biodiesel Production from Tobacco (Nicotiana Tabacum L.) Seed Oil with a High Content of Free Fatty Acids”, Fuel, Cilt 85, Sayı 17-18, ss. 2671-2675.
  • Verhoef, M. J., Kooyman, P. J., Peters, J. A., Bekkum, H. V., 1999, “A study on the stability of MCM-41-supported heteropoly acids under liquid- and gas-phase esterification conditions”, Microporous Mesoporous Mater., Cilt 27, Sayı 2-3, ss. 365-371.
  • Yun, L., Ling, W., 2009, “Bio-Diesel Preparation from Waste Oil using Cation Exchange Resin as Heterogeneous Catalyst” Chem. Technol. Fuels Oils, Cilt 45, Sayı 6, ss. 417-424.
  • Zhang, H., Li H., Pan, H., Liu, X., Yang, K., Huang, S., Yang, S., 2017, “Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid”, Energy Conversion and Management, Cilt 138, ss. 47-53.
  • Zhang, X., Deng, Q., Han, P., Xu, J., Pan, L., Wang, L., Zou, J., 2016, “Hydrophobic Mesoporous Acidic Resin for Hydroxyalkylation/Alkylation of 2-Methylfuran and Ketone to High-Density Biofuel” AIChE Journal, Cilt 63, Sayı 2, ss. 680-688.
  • Zheng, Y., Zheng, Y., Yang, S., Guo, Z., Zhang, T., Song, H., Shao, Q., 2017, “Esterification synthesis of ethyl oleate catalyzed by Brønsted acid–surfactant-combined ionic liquid”, Green Chemistry Letters and Reviews, Cilt 10, Sayı 4, ss. 202-209.