HKUST-1 ve GrO@HKUST-1 KATKILI SODYUM ALJİNAT HİBRİT MEMBRANLARIN PERVAPORATİF DESALİNASYONU
Bu çalışmada HKUST-1 ve HKUST-1@GOmetal organik kafes yapıları sentezlenmiş ve sodyum aljinat membrana eklenerek pervaporatif desalinasyon için hibrit membranlar üretilmiştir. Hibrit membranlar FTIR, XRD, SEM, TGA ve temas açısı kullanılarak karakterize edilmiştir. Sodyum aljinat membrana ilave edilen HKUST-1 ve HKUST-1@GO miktarının, besleme tuz konsantrasyonunun ve operasyon sıcaklığının akı ve tuz giderimine etkisi incelenmiştir. Pervaporatif desalinasyon uygulamalarında sodyum aljinat membrana HKUST-1 ve HKUST-1@GO ilavesi membranın saflaştırma performansını iyileştirmiştir. Optimum HKUST-1 ve HKUST-1@GO yükleme oranı ağırlıkça %3 olarak belirlenmiştir. Optimum operasyon parametreleri 60oC sıcaklık ve ağırlıkça %4 besleme tuz konsantrasyonu olarak her iki hibrit membran için belirlenmiştir. Hibrit membranlar mükemmel desalinasyon performansı sergilemiş ve en yüksek ayırma performansı HKUST-1@GO yüklü hibrit membran ile %99,99 tuz giderimi ve 6,59 kg/m2h su akısı olarak elde edilmiştir.
Pervaporative Desalination by HKUST-1 and GrO@HKUST-1 Doped Sodium Alginate Hybrid Membrane
In this study, HKUST-1 and GrO@HKUST-1 metal organic framework were synthesized and added to the sodium alginate membrane for the manufacture of hybrid membranes to use in pervaporative desalination. The hybrid membranes were characterized by using FTIR, XRD, SEM, TGA and contact angle. The effects of HKUST-1 and GrO@HKUST-1 content in the sodium alginate membrane, feed NaCl concentration, and operation temperature were assessed for the flux and salt rejection. The addition of HKUST-1 and GrO@HKUST-1 to the sodium alginate membrane improved the purification performance in pervaporative desalination applications. The optimal loading ratios for HKUST-1 and GrO@HKUST-1 were specified as 3 wt% HKUST-1 and 3 wt% HKUST-1@GO, respectively. Optimum operation parameters were achieved at 60oC of temperature and a 4 wt% of feed NaCl concentration for both hybrid membranes. Hybrid membranes (GrO@HKUST-1 doping) exhibited excellent desalination performance with salt rejections of 99,99% and water fluxes of 6,59 kg/m2h.
___
- Azizi, A., Feijani, E. A., Ghorbani, Z., Tavasoli, A., 2021, "Fabrication and characterization of highly efficient three component CuBTC/graphene oxide/PSF membrane for gas separation application", International Journal of HydrogenEnergy, Cilt 4, Sayı 2, ss. 2244-2254.
- Bhoria, N., Basina, G., Pokhrel, J., Kumar Reddy, K. S., Anastasiou, S., Balasubramanian, V., Karanikolos, G. N., 2020. "Functionalization Effects on HKUST-1 and HKUST-1/Graphene Oxide Hybrid Adsorbents for Hydrogen Sulfide Removal", Journal of HazardousMaterials, Cilt 394, ss.122565.
- Cannilla, C., Bonura, G., Frusteri, F., 2017, ‘’Potential of Pervaporation and Vapor Separation with Water Selective Membranes for an Optimized Production of Biofuels—A Review’’, Catalysts, Cilt 7, ss. 187.
- Castro-Muñoz, R., 2020, “Breakthroughs on tailoring pervaporation membranes for water desalination: A review”, Water Research, Cilt 187, 116428.
- Dahanayaka, M.,Babicheva, R., Chen, Z., Wing-Keung Law, A., See Wu, M., Zhou, K., 2020, "Atomistic Simulation Study of GO/HKUST-1 MOF Membranes for Seawater Desalination via Pervaporation", Applied Surface Science, Cilt 503, ss. 144198.
- Drioli, E., Stankiewicz, A. I., Macedonio, F., 2011, “Membrane engineering in process intensification—an overview”, Journal of Membrane Science, Cilt 380, ss.1–8.
- Elimelech, M., Phillip, W. A., 2011, “The Future of Seawater Desalination: Energy, Technology, andthe Environment”, Science, Cilt 333, ss. 712-717.
- Erçin A. E., Hoekstra A. Y., 2014, “Water footprint scenarios for 2050: A global analysis”, Environment International, Cilt 64, ss. 71-82.
- Hameeteman, E., 2013, “Future Water (in) Security: Facts, Figures, and Predictions”, Global Water Institute, ss. 1–16.
- Huang, W., Zhou, X., Xia, Q., Peng, J., Wang, H., Li, Z., 2014, “Preparation and Adsorption Performance of GrO@Cu-BTC for Separation of CO2/CH4”, Industrial&Engineering Chemistry Research, Cilt 53, Sayı 27, ss. 11176–11184.
- Jee, K. Y., Kim, J. S., Kim, J., & Lee, Y. T., 2015, "Effect of hydrophilic Cu3(BTC)2 additives on the performance of PVDF membranes for water flux improvement", Desalination and Water Treatment, Cilt 57, Sayı 38, ss. 17637–17645.
- Kachhadiya, D. D., Murthy, Z. V. P., 2022, "Graphene oxide modified CuBTC incorporated PVDF membranes for saltwater desalination via pervaporation", Separation and Purification Technology, Cilt 290, 120888.
- Lee, S. J., Hann, T., & Park, S. H., 2020, “Seawater Desalination by Using MOF-Incorporated Cu-Based Alginate Beads without Energy Consumption”, ACS Applied Materials & Interfaces, Cilt 12, ss. 16319-16326.
- Li, X.,Molelekwa, G.F., Khellouf, M., Van der Bruggen, B.,Gonc¸alves, G.A.B., Marques, P. (Eds.), 2019. Nanostructured Materials for Treating Aquatic Pollution. Springer International Publishing, Cham, p. 243.
- Liang, W., Li, L., Hou, J., Shepherd, N. D., Bennett, T. D., D’Alessandro, D. M. and Chen, V., 2018, "Linking defects, hierarchical porosity generation and desalination performance in metal–organic frameworks", Chemical Science, Cilt 9, ss. 3508-3516.
- Prihatiningtyas, I.,& Van der Bruggen, B. 2020, “Nanocomposite Pervaporation Membrane for Desalination”, Chemical Engineering Researchand Design, Cilt 164, ss. 147-161.
- Semiat R., 2008, “Energy issues in desalination processes”, Environmental Science & Technology, Cilt 42, ss. 8193.
- Shahmirzadi, M. A. A., Kargari, A., 2018, “Nanocomposite membranes”, in Emerging Technologies for Sustainable Desalination Handbook, Butterworth-Heinemann, Oxford, UK.
- Slater C. S., Schurmann, T., MacMillian J., Zimarowski, A. 2006, "Separation of diacteone alcohol-water mixtures by membrane pervaporation", Separation Science and Technology, Cilt 41 , Sayı 12, ss. 2733-2753.
- Sorribas, S.,Kudasheva, A., Almendro, E., Zornoza, B., de la Iglesia, Ó., Téllez, C., Coronas, J., 2015. "Pervaporation and membrane reactor performance of polyimide based mixed matrix membranes containing MOF HKUST-1", Chemical Engineering Science, Cilt 124, ss.37–44.
- Sun, X.-F., Qin, J., Xia, P.-F., Guo, B.-B., Yang, C.-M., Song, C., & Wang, S.-G., 2015. "Graphene oxide–silver nanoparticle membrane for biofouling control and water purification", Chemical Engineering Journal, 281, 53–59.
- Vörösmarty, C. J., Green, P., Salisbury, J., Lammers, R. B., 2000. “Global water resources: vulnerability from climate change and population growth”, Science, Cilt 289, Sayı 5477, ss. 284-288.
- Wang, Q., Li. N., Bolto, B., Hoang, M., Xie, Z., 2016. “Desalination by Pervaporation A review”, Desalination, Cilt 387, ss. 46-60.
- Wasewar K., Patidar S., Agarwal V. K., 2009, “Esterification of lactic acid with ethanol in a pervaporation reactor: modeling and performance study”, Desalination, Cilt 243, ss. 305–313.
- Xing, Y., Xue, Y., Qin, D., Zhao, P., Li, P., 2022, "Microwave-induced ultrafast crosslinking of Poly (vinyl alcohol) blended with nanoparticles as wave absorber for pervaporation desalination", Journal of Membrane Science Letters, Cilt 2, Sayı 1, 100021.
- Xue, Y. L., Huang, J., Lau, C. H., Cao, B., Li, P., 2020, “Tailoring the molecular structure of crosslinked polymers for pervaporation desalination”, Nature Communications, Cilt 11, Sayı 1, ss. 1461.
- Yeang, Q. W.,Sulong, A. B., & Tan, S. H., 2018,.”Asymmetric membrane containing electrospun Cu-BTC/poly(vinylalcohol) for pervaporation dehydration of 1,4-dioxane”, Separation and Purification Technology, Cilt 192, ss. 240–252.
- Zu, D.-D., Lu, L., Liu, X.-Q., Zhang, D.-Y., & Sun, L.-B., 2014,”Improving Hydrothermal Stability and Catalytic Activity of Metal–Organic Frameworks by Graphite Oxide Incorporation”, The Journal of Physical Chemistry C, Cilt 118, Sayı 34, ss.19910–19917.