The Role In Angiogenesis Of Galectin-3

It is now thought that protein-carbohydrate interaction is of great importance for the modulation of cell-cell and extracellular matrix (ECM)-cell interactions, which mediate various biological processes such as apoptosis, cancer metastasis, growth regulation and cell activation. Galectin-3 expression is increased in neoplastic cell types. Galectin-3 is connected with the process of development of tumors, including growth, adhesion, proliferation and metastasis. It has a broad effect on tumor development including cell proliferation, apoptosis, cell adhesion, invasion, angiogenesis and metastasis. Consequently, it is of theut most importance to understand how Galectin-3 affects the angiogenic protein VEGF and IL-6 cytokine and the pathogenesis of the diseases, and to correlate them with treatment, from the aspect of developing new treatment protocols and even eliminating risk factors in healthy people before illness develops. This is a topic which is in need of research.

Galaktinin Angiogenezdeki Rolü

Son yıllarda, protein karbohidrat etkileşimleri, apoptozis, kanser metastazisi, büyümenin düzenlenmesi, hücre aktivasyonu gibi çeşitli biyolojik süreçlere aracılık eden hücrehücre ve ekstrasellulermatrix (ECM)–hücre etkileşiminin modülasyon için çok önemli olduğu düşünülmektedir.Galectin- 3 ekspresyonu neoplastik hücre tiplerinde artmıştır. Galectin-3 hücre büyümesi, adezyon, proliferasyon ve metastazın dahil olduğu tümörlerin gelişim süreci ile bağlantılıdır. Galectin-3 hücre proliferasyonu, apoptozis, hüzcre adezyonu, invazyon, anjiogenezis ve metastaziside içeren tümör gelişiminde geniş bir etkisi vardır. Sonuç olarak, kanseri hastalarında Galectin- 3’ün angiogenik bir protein olan VEGF ve IL-6 sitokini üzerine nasıl etki ettiği, hastalıkların patogenezini anlamak ve bunları tedavi ile ilişkilendirmek, yeni tedavi protokollerinin geliştirilmesi ve hatta hastalıklar oluşmadan sağlıklı kişilerin risk faktörlerinin elimine edilmesi açısından son derece önemlidir ve araştırılması gereken bir konu olarak karşımıza çıkmaktadır.

Kaynakça

1. Hafiz Ahmed and Dina M. M. AlSadek, Galektin-3 as a Potential Target to Prevent Cancer Metastasis, Clinical Medicine Insights: Oncocology:9, 113-21, 2015

2. Gong HC, Honjo Y, Nangia-Makker P, et al. The NH2 terminus of Galektin-3 governs cellular compartmentalization and functions in cancer cells. Cancer Res.;59:6239–45, 1999

3. Fukumori T, Oka N, Takenaka Y, Nangia- Makker P, Elsamman E, Kasai T, Shono M, Kanayama HO, Ellerhorst J, Lotan R andRaz A: Galektin-3 regulates mitochondrial stability and antiapoptotic function in response to anticancer drug in prostate cancer. Cancer Res 66: 3114-3119, 2006.

4. Shimura T, Takenaka Y, Fukumori T, Tsutsumi S, Okada K, Hogan V, Kikuchi A, Kuwano H andRaz A: Implication of Galektin-3 in Wnt signaling. Cancer Res 65: 3535-7, 2005.

5. Tsogt-Ochır Dondoo, Tomoharu Fukumorı, Keı Daızumoto, Tomoya Fukawa, Mıho Kohzukı, Mınoru Kowada, Yoshıto Kusuhara, Hıdehısa Morı, Hıroyoshı Nakatsujı, Masayukı Takahashı And Hıro-Omı Kanayama, Galektin-3 Is Implicated İn Tumor Progression And Resistance To Anti- Androgen Drug Through Regulation Of Androgen Receptor Signaling İn Prostate Cancer Antıcancer Research 37: 125-134, 2017

6. Ste´phane Califice, Vincent Castronovo, Marc Brackeand Fre´de´ ricvan den Bruˆ le, Dual activities of Galektin-3 in human prostate cancer: tumor suppression of nuclear Galektin-3 vs tumor promotion of cytoplasmic Galektin-3, Oncogene, 23, 7527–36, 2004.

7. Sathisha U. Venkateshaiah, Mallikarjuna S. Eswaraiah, HarishNayaka M. Annaiah, Shylaja M. Dharmesh, Antimetastatic pecticpolysaccharide from Decalepishamiltonii; Galektin-3 inhibition and immune-modulation, , Clin Exp Metastasis, DOI 10.1007/s10585-017-9836-z)

8. Pratima Nangia-Makker, SusumuNakahara, Victor Hogan, AvrahamRaz, Galektin-3 in apoptosis, a novel therapeutic target, J Bioenerg Biomembr., 39:79–84, 2007

9. Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M, Nabi, IR, Wrana JL, and Dennis JW Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306:120–4, 2004

10. Margadant C, van den Bout I, vanBoxtel AL, Thijssen VL, and Sonnenberg A Epigenetic regulation of Galektin-3 expression by b1 integrins promotes cell adhesion and migration. J Biol Chem 287:44684–93, 2012

11. Liu-cheng Li, Jun Li, and JianGao, Functions of Galektin-3 and Its Role in Fibrotic Diseases, J Pharmacol Exp Ther 351:336–43, November 2014

12. Tsogt-Ochır Dondoo, Tomoharu Fukumor, Ke Daızumoto, Tomoya Fukawa, Mıho Kohzuk, Mınoru Kowada, Yoshıto Kusuhara, Hıdehısa Mor, Hıroyoshı Nakatsuj, Masayuk Takahash And Hıro- Omı Kanayama, Galektin-3 Is Implicated in Tumor Progression and Resistanceto Anti-androgen Drug Through Regulation of Androgen Receptor Signaling in Prostate Cancer Antıcancer Research 37: 125-34, 2017

13. Raica M, Cimpean AM, Ribatti D. Angiogenesis in pre-malignantconditions. Eur J Cancer. 45:1924–34, 2009.

14. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ.. Vessel cooption, regression, andgrowth in tumors mediated by angiopoietins and VEGF. Science. 284:1994–8, 1999.

15. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86:353–64, 1996.

16. Bussolati B, Grange C, Camussi G. Tumor exploits alternative strategies to achieve vascularization. FASEB J. 25:2874–2882, 2011.

17. Nangia-Makker P, Balan V, Raz T, et al. Regulation of tumor progression by extracellular Galektin-3. Cancer Microenviron. 1:43–58, 2008.

18. Markowska AI, Liu FT, Panjwani N. Galektin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J ExpMed. 207:1981–93, 2010.

19. Markowska AI, Jefferies KC, Panjwani N. Galektin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J BiolChem. 86:29913–21, 2011.

20. D’Haene N, Sauvage S, Maris C, Adanja I, Le Mercier M, Decaestecker C, Baum L, Salmon I. VEGFR1 and VEGFR2 involvement in extracellular Galektin-1- and Galektin-3-induced angiogenesis. PLoS ONE. 8:e67029, 2013.

21. Iurisci I, Tinari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S. Concentrations of Galektin-3 in the sera of normal controls and cancer patients. Clin Cancer Res. 6:1389–1393, 2000.

22. Xie L, Ni WK, Chen XD, Xiao MB, Chen BY, He S, Lu CH, Li XY, Jiang F, Ni RZ. The expressions and clinical significances of tissue and serum Galektin-3 in pancreatic carcinoma. J Cancer Res Clin Oncol. 138:1035–43, 2012.

23. Gao X, Liu D, Fan Y, Li X, Xue H, Ma Y, Zhou Y, Tai G. The two endocytic pathways mediated by the carbohydrate recognition domain and regulated by the collagen-like domain of Galektin-3 in vascular endothelial cells. PLoS ONE. 7:e52430, 2012.

24. Chen C, Duckworth CA, Zhao Q, Pritchard DM, Rhodes JM, Yu LG.. Increased circulation of Galektin-3 in cancer induces secretion of metastasis promoting cytokines from blood vascular endothelium. Clin Cancer Res. 19:1693–1704. 2013

25. Noma N, Simizu S, Kambayashi Y, et al. Involvement of NF-kappaB-mediated expression of Galektin-3-binding protein in TNF-alpha-induced breast cancer cell adhesion. Oncol Rep;27: 2080–4, 2012.

26. Tatsuyoshi Funasaka, Avraham Raz, and Pratima Nangia-Makker, Galektin-3 in angiogenesis and metastasis, Glycobiology vol. 24 no. 10 pp. 886–91, 2014

27. Junxiu Liu, Yang Cheng, Mian He, and Shuzhong Yao, Vascular endothelial growth factor C enhances cervical cancer cell invasiveness via up regulation of Galektin-3 protein, Gynecol Endocrinol, 30(6): 461–5, 2014

28. Nangia-Makker P, Hogan V, Honjo Y, Baccarini S, Tait L, Bresalier R, Raz A.. Inhibition of human cancer cell growth and metastasis innudemice by oral intake of modified citruspectin. J Natl Cancer Inst. 94:1854–62, 2002.

Kaynak Göster