Ortaokul Matematik Öğretmeni Adaylarının Problem Çözme Sürecindeki Düşünme Yolları, Anlama Yolları ve Pedagojik Yaklaşımları
Bu çalışmada ortaokul matematik öğretmeni adaylarının problem çözme bağlamındaki düşünme yolları, anlama yolları ve pedagojik açıklamaları ile bunlar arasındaki ilişkilerin DNR çerçevesi kapsamında araştırılması amaçlanmaktadır. Dört ortaokul matematik öğretmeni adayından nitel araştırma yöntemlerinden klinik görüşme yoluyla toplanan veriler açık ve eksensel kodlama yaklaşımı ile analiz edilmiştir. Analiz sonuçları matematik öğretmeni adaylarının problem çözme bağlamındaki düşünme yollarının iki kategoriye ayrıldığını göstermiştir. Ayrıca bu çalışma problem çözme bağlamındaki düşünme yollarının ve özellikle kanıt şemalarının ilköğretim matematik öğretmen adaylarının pedagojik açıklamalarında etkili bir rol oynadığını açığa çıkarmıştır.
Pre-Service Middle School Mathematics Teachers' Ways of Thinking, Ways of Understanding and Pedagogical Approaches in Problem-Solving Process
The aim of this study is to investigate pre-service middle school mathematics teachers' ways of thinking (WoT), ways of understanding (WoU) and pedagogical approaches as well as the relationships among them in the context of problem-solving within the DNR framework. In this qualitatively designed study, the data was collected through clinical interviews with four pre-service middle school mathematics teachers and analyzed through open and axial coding approach. The results of the analysis indicated that pre-service mathematics teachers' WoTs in the context of problem-solving were fell into two categories. This study also revealed that WoTs and particularly proof schemes in the context of problem-solving might play effective role in pre-service middle school mathematics teachers' pedagogical approaches.
___
- Bell, A. (1978). The learning of process aspects of mathematics. In E. Cohors-Fresenborg (Ed.), Proceedings of the 2nd of the PME (pp. 48-78), Osnabrück, West Germany.
- Cuoco, A., Goldenberg, E. P. and Mark, J. (1996). Habits of mind: An organizing principle for mathematics curricula. The Journal of Mathematical Behavior, 15(4), 375-402.
- English, L. D., Lesh, R. and Fennewald, T. (2008). Future directions and perspectives for problem-solving research and curriculum development. In M. Santillan (Ed.), Proceedings of the 11th ICME (pp. 6-13), Monterrey, Mexico.
- Fraenkel, J. R. and Wallen, N. E. (1996). How to design and evaluate research in education (3th Edition). New York: McGraw-Hill.
- Harel, G. (2008). DNR perspective on mathematics curriculum and instruction, Part I: focus on proving. ZDM, 40(3), 487-500.
- Harel, G. and Lim, K. H. (2004). Mathematics teachers' knowledge base: Preliminary results. In M.J. Hoines & A.B. Fuglestad (Eds.), Proceedings of the 28th Conference of the ICME (Vol. 3(3), pp. 25 - 32). Bergen, Norway.
- Harel, G. and Sowder, L. (1998). Students' proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics education III (pp. 234-283). Province, RI: American Mathematical Society.
- İskenderoglu, T., Baki, A. and İskenderoglu, M. (2010). Proof schemes used by first grade of preservice mathematics teachers about function topic. Procedia-Social and Behavioral Sciences, 9, 531-536.
- Koichu, B. and Harel, G. (2007). Triadic interaction in clinical task-based interviews with mathematics teachers. Educational Studies in Mathematics, 65, 349-365.
- Lesh, R. and Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning, 5(2-3), 157-189.
- Lim, K. H. (2006). Students' mental acts of anticipating in solving problems involving algebraic inequalities and equations. Unpublished dissertation, San Diego State University.
- Lim, K. H., Morera, O. and Tchoshanov, M. (2009). Assessing problem-solving dispositions: Likelihood-to-act survey. In S. L. Swars, D. W. Stinson and S. Lemons-Smith (Eds.), Proceedings of the 31th of the PME-NA (pp. 700-708). Atlanta: Georgia State University.
- Lim, K. H. and Selden, A. (2009). Mathematical habits of mind. In S. L. Swars, D. W. Stinson and S. Lemons-Smith (Eds.), Proceedings of the 31th of the PME-NA (pp. 1576-1583). Atlanta: Georgia State University.
- Pólya, G. (1945). How to solve it. Princeton. New Jersey: Princeton University.
- Ramnarain, U. (2014). Empowering educationally disadvantaged mathematics students through a strategies-based problem solving approach. The Australian Educational Researcher, 41(1), 43- 57.
- Schoenfeld, A. H. (1992). Learning to think mathematically: Problem-solving, metacognition and sense making in mathematics. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A Project of the NCTM (pp. 334-370). New York: Macmillan.
- Strauss, A. L. and Corbin, J. M. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). Thousand Oaks: Sage Publications.
- Şengül, S. and Güner, P. (2013). Investigation of preservice mathematics teachers' proof schemes according to DNR based instruction. International Journal of Social Science Studies, 6(2), 869878.
- Viholainen, A. (2011). Critical features of formal and informal reasoning in the case of the concept of derivative. In B. Ubuz (Ed.), Proceedings of 35th PME (pp. 305-312). Ankara, Turkey.
- Watson, A. and Harel, G. (2013). The role of teachers' knowledge of functions in their teaching: A conceptual approach with illustrations from two cases. Canadian Journal of Science, Mathematics and Technology Education, 13(2), 154-168