The importance of protein expression SOD2 in response to oxidative stress for different cancer cells

DNA hasarı, onarım mekanizmasındaki bozukluklar ve kanser arasındaki nedensel ilişki deneysel ve epidemiyolojik veriler ile gösterilmiştir. DNA hasarının oksidatif strese dönüşüm aşamaları baskılayıcı genlerin mutasyonal inaktivasyonu ve onkogenlerin aktivasyonu ile ilişkilendirilir. Bu amaç doğrultusunda, kanser hücrelerinin SOD2 (Superoksit dismutaz 2) değişimine bağlı olarak oksidatif stres koşullarındaki etkileri ve bu mekanizmada NF-kB (Nükleer Faktör kappa B) transkripsiyon faktörünün önemi gösterilmiştir. Hücre hatları ATCC’nin (Amerikan tipi kültür kolleksiyonu) belirttiği prosedürlere uygun olarak kültüre edilerek saklandı. Hücreler gruplara ayrıldıktan sonra, MNNG ve tempol ajanlarının optimal konsantrasyonun hücre canlılık (MTT test) yöntemiyle belirlenmesiyle belirtilen zaman aralıklarında uygulandı. Hücre hatlarındaki farklı SOD2 protein düzeyleri western blot analizleri ile gösterilerek karşılaştırıldı. Bununla birlikte transfeksiyon yoluyla yapılan luciferase yöntemi kullanılarak NF-kB enzimatik aktivitesi belirlendi. Bunun sonucunda, 20 μM MNNG uygulandığında yüksek NF-kB aktivitesi gözlenirken, 30 μM tempol tedavisi ile NF-kB seviyesinin azaldığı görüldü. Sonuçlar SOD2 ekspresyonu ve NF-kB aktivasyonu arasında güçlü korelasyon gösterdi.

SOD2 Salınımının farklı kanser türlerinde oksidatif strese karşı değişimi ve önemi

As a causal relationship between DNA damage, repair mechanism disorders and cancer demonstrated by experimental and epidemiological data. Transforming process starts from DNA damage to oxidative stress is associated with mutational inactivation of suppressor genes, activation of oncogenes. Related to this aim, it is important to indicate how cancer cells react under oxidative stress through by SOD2 expression, besides presenting correlation between NF-kB mechanism. Cell lines were maintained and cultured as recommended by ATCC (American type culture collection) resource. Cells were grouped and after detecting optimum concentration by MTT test (cell viability assay), treated with DNA damage agent (MNNG) and antioxidant (tempol) for indicated time points. Western blot analysis revealed that cell lines with comparable levels of SOD2 (Superokside dismutase 2) protein expression. However, cells were collected to measure NF-kB (Nuclear Factor kappa B) enzymatic activity using luciferase expression by transfection way. We observed high constitutive NF-kB activity by using 20 μM MNNG although decreasing NF-kB during 30 μM tempol treatment. The results showed strong correlation between SOD2 expression and NF-kB activation.

___

  • 1. Bartkova J, Horejsi Z, Koed K, Krämer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Ørntoft T, Lukas J, Bartek J: DNA damage response as a candidate anti cancer barrier in early human tumorigenesis. Nature, 434, 864-70, 2005.
  • 2. Yu B P: Cellular defenses against damage from reactive oxygen species. Phys Rev, 74 (1): 139-162, 1994.
  • 3. Kohchi C, Inagawa H, Nishizawa T, Soma G: ROS and innate immunity. Anticancer Res, 29, 817-821, 2009.
  • 4. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell, 100, 57-70, 2000.
  • 5. Vurusaner B, Poli G, Basaga H: Tumor suppressor genes and ROS: Complex networks of interactions. Free Radic Biol Med, 52, 7-18, 2012.
  • 6. Pelicano H, Dennis C, Peng Huang: ROS stress in cancer cells and therapeutic implications. Drug Resist Updat, 7 (2): 97-110, 2004.
  • 7. Brozmanova J, Dudas A, Henriques JA: Repair of oxidative DNA damage an important factor reducing cancer risk: Minireview. Neoplasma, 48, 85-93, 2001.
  • 8. Jose MM, Francisca MS: Role of reactive oxygen species in apoptosis: Implications of cancer therapy. J Biochem, 32 (2): 157-170, 2000.
  • 9. Huen MS, Chen J: The DNA damage response pathways: At the crossroad of protein modifications. Cell Res, 18, 8-16, 2008.
  • 10. Elliott RM, Astley SB, Southon S, Archer DB: Measurement of cellular repair activities for oxidative DNA damage. Free Radic Biol Med, 28, 1438-1446, 2000.
  • 11. Shlomai J: Redox control of protein-DNA interactions: From molecular mechanisms to significance in signal transduction, gene expression, and DNA replication. Antioxid Redox Signal, 13, 1429-1476, 2010.
  • 12. Mena S, Ortega A, Estrela JM: Oxidative stress in enviromental- induced carcinogenesis. Mutat Res, 674, 36-44, 2009.
  • 13. Wu WS: The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev, 25, 695-705, 2006.
  • 14. Jones PA, Baylin SB: The epigenomics of cancer. Cell, 128 (4): 683- 692, 2007.
  • 15. Kryston TB, Georgiev AB, Pissis P, Georgakilas AG: Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res, 711, 193- 201, 2011.
  • 16. Poulsen HE, Jensen BR, Weimann A, Jensen SA, Sorensen M, Loft S: Antioxidants, DNA damage and gene expression. Free Radic Res, 22, 33- 39, 2000.
  • 17. Offord E, Van Poppel G, Tyrrell R: Markers of oxidative damage and antioxidant protection: current status and relevance to disease. Free Radic Res, 33, 5-19, 2000.
  • 18. Peng Huang, Li Feng, Elizabeth AO, Micheal JK, William P: Superoxide dismutase as a target for the selective killing of cancer cells. Nature, 407, 390-395, 2000.
  • 19. Perry JJ, Shin DS, Getzoff ED, Tainer JA: The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta, 1804, 245-262, 2010.
  • 20. Kerstin NS, Paul A, Peter C, Patrick AB: the roles of hydrogen peroxide and superoxide as messengers in activation of transcription factor NF-kB. Chemistry&Biology, 2, 13-22, 1995.
  • 21. Russell DP, Lesley AS, Hunter EM, Cree IA: Comparison of MTT and ATP-based assays for the measurement of viable cell number. J Biolumin Chemilumine, 10 (1): 29-34, 1995.
  • 22. Lejeune D, Hasanuzzaman M, Pitcock A, Francis J, Sehgal I: The superoxide scavenger TEMPOL induces urokinase receptor expression in human prostate cancer cells. Molecular Cancer, 5, 21, 2006.
  • 23. Kao SH, Wong HK, Chiang CY, Chen HM: Evaluating the compatibility of three colorimetric protein assays for two-dimensional electrophoresis experiments. Proteomics, 8 (11): 2178-2184, 2008.
  • 24. Joslyn KB, Eric LB, Nancy M, Kristel V, Valeria T, Massimo Z, Richard CS, Navdeep SC: Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metabolism, 1 (6): 409-414, 2005.
  • 25. Jessamy CT, Charles GB, Cynthia N, John ER, Jeff H: Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo. Molecular Cancer, 9, 299, 2010.
  • 26. Duncan DB: Multiple range and multiple F tests, Biometrics, 11, 1-42, 1995.
  • 27. Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nature, 3, 415-428, 2002.
  • 28. Barzilai A, Biton S, Shiloh Y: The role of the DNA damage response in neuronal development, organization and maintenance. DNA Repair, 7 (7): 1010-1027, 2008.
  • 29. Khanna K, Lavin M, Jackson S, Mulhern T: ATM, a central controller of cellular responses to DNA damage. Cell Death Differ, 8, 1052-1065, 2007.
  • 30. Quick KL, Dugan LL: Superoxide stress identifies neurons at risk in a model of ataxia-telangiectasia. Ann Neurol, 49, 627-35, 2001.
  • 31. Li N, Karin M: Signaling pathways leading to nuclear factor kappa B activation. Methods Enzymoly, 319, 273-279, 2000.
  • 32. Gilmore TD, Herscovitch M: Inhibitors of NF-kappaB signaling: and counting. Oncogene, 25 (51): 6887-6899, 2006.
  • 33. Gutteridge JM: Biological origin of free radicals, and mechanisms of antioxidant protection. Chem Biol Interacs, 91, 133-140, 1994.
  • 34. Bernstein C, Nfonsam V, Prasad AR, Bernstein H: Epigenetic field defects in progression to cancer. World J Gastroenterol, 5 (3): 43-49, 2013.
  • 35. Nishikawa M, Hashida M: Inhibition of tumour metastasis by targeted delivery of antioxidant enzymes. Expert Opin Drug Deliv, 3, 355- 69, 2006.
  • 36. Clopton DA, Saltman P: Low-level oxidative stress causes cell-cycle specific arrest in cultured cells. Biochem Biophys Res Communs, 210, 189- 196, 1995.
  • 37. Harold ES, Sharon SM, Darrell EA, Peter G, John AM: The antioxidant conundrum in cancer. Cancer Res, 63, 4295, 2003.
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Effects of nonylphenol on motion kinetics, acrosome and mitochondrial membrane potential in frozen-thawed bull sperm

CEVDET UĞUZ, ÖMER VARIŞLI, Cansu AĞCA, Yüksel AĞCA

Doğal olarak enfekte olmuş farklı tür hayvanlardan, post-mortem olarak elde edilen beyin numunelerinde, klasik kuduzun rutin laboratuvar teşhisinde real time RT-PCR testinin değerlendirilmesi

METİN GÜRÇAY, Ayşe PARMAKSIZ, Ayşe KILIÇ

Assessment of prolactin, steroid hormone levels in tissue homogenate, serum and receptor distributions in canine mammary tumours

SİNEM ÖZLEM ENGİNLER, TUĞBA SEVAL FATMA TOYDEMİR KARABULUT, ATİLA ATEŞ, IRAZ AKIŞ AKAD, Haydar ARMAĞAN, Kemal ÖZTABAK, İSMAİL KIRŞAN, MEHMET CAN GÜNDÜZ, İbrahim FIRAT

Effects of Ankaferd Blood Stopper (ABS) and topical tripeptide copper complex (TCC) on wound healing in rats: An experimental study

Y. Nihal GÜL SATAR, İ. Taci CANGÜL, Ayşe TOPAL, Ayberk OKTAY, Kivanc INAN, M. Barış AKGÜL

The comparison of three different cryoprotectants in cryopreservation of Angora goat semen

Serhat BÜYÜKLEBLEBİCİ, PÜRHAN BARBAROS TUNCER, Umut TAŞDEMİR, Taner ÖZGÜRTAŞ, EMRE DURMAZ, OLGA BÜYÜKLEBLEBİCİ

Conjunctival bacterial and fungal isolates in clinically healthy working horses in Iran

Abdullah SOOREH ARAGHI, Masoud NAVIDI, Mazdak RAZI

An investigation of micronucleus induction by Butylated Hydroxytoluene in wistar rat bone marrow cells

FİKRİYE POLAT, GÜNSEL BİNGÖL, NESRİN TURAÇLAR

The importance of protein expression SOD2 in response to oxidative stress for different cancer cells

Merve ALPAY, Kim WANJU

Effect of Clopidol and Amprolium/Ethopabate on performance and intestinal morphology of chickens with experimental coccidiosis

Shahab BAHADORAN, Hossein HASSANPOUR, Khodadad Pirali KHEIRABADI, Sepehr SHEKARCHIAN

A review on the current use of Alpha2 agonists in small ruminants

Zahir SHAH, Ming Xing DING, Man Li HU