Inactivation Effect of Probiotic Biofilms on Growth of Listeria monocytogenes
Probiyotik laktik asit bakterilerinin ve biyofilmlerinin gıdaları bozucu organizmalara ve patojen bakterilere karşı antagonistik etkileri bulunmaktadır. Son zamanlarda araştırmacılar patojen bakterilerin inhibisyonu için probiyotik biyofilmlerin kullanımı üzerine yoğunlaşmışlardır. Bu çalışmanın amacı, ideal prebiyotik konsantrasyonuyla probiyotik biyofilmleri geliştirmek ve Listeria monocytogenes'in hem planktonik hücrelerinin hem de biyofilmleri üzerine probiyotik biyofilmlerin inaktivasyon etkisini belirlemektir. Biyofilm oluşumları mikroplak yöntemi kullanılarak uygulanmıştır. Prebiyotik katkılar en yüksek canlı probiyotik hücre sayılı biyofilmleri oluşturmak için kullanılmış ve prebiyotik katkıların ideal konsantrasyonları cevap yüzey tekniğine göre belirlenmiştir. Lactobacillus casei Shirota ve Lactobacillus rhamnosus tarafından üretilen biyofilmler sırasıyla 9.46 log kob/ml ve 9.66 log kob/mL canlı hücre sayısı içermiştir. L. casei Shirota ve L. rhamnosus tarafından en yüksek canlı hücre sayılı biyofilm oluşumu için ideal prebiyotik konsantrasyonları sırasıyla %3 kazein pepton-%0 FOS ve %1.5 kazein pepton-%1.5 FOS olarak bulunmuştur. Probiyotik biyofilmler L. monocytogenes gelişimine karşı inaktivasyon sergilemiştir ve L. monocytogenes'in planktonik hücrelerinde 0.66-2.01 log kob/mL'lik ve biyofilmlerinde 0.40-1.69 log kob/mL'lik bir azalışa neden olmuştur. L. monocytogenes'in planktonik hücreleri probiyotik biyofilmlerine L. monocytogenes'in biyofilmlerinden daha duyarlı bulunmuştur. L. rhamnosus biyofilmi L. monocytogenes gelişimi üzerine L. casei Shirota'dan daha yüksek bir inhibisyon etkisi göstermiştir. Bu bulgular bu çalışmada kullanılan probiyotik türlerin biyofilmlerinin patojen bakterilerin kontrolünde çok iyi birer aday olabileceğini göstermiştir
Listeria monocytogenes’in Gelişimi Üzerine Probiyotik Biyofilmlerin İnaktivasyon Etkisi
Probiotic lactic acid bacteria and their biofilms have antagonistic activity against food spoilage organisms and pathogenic bacteria. Recently, researchers focused on the use of probiotic biofilms for inhibition of pathogenic bacteria. The aim of this research is to improve probiotic biofilms with optimal prebiotic concentration and to determine their inactivation effect on both planktonic cells and biofilm growth of Listeria monocytogenes. Biofilm formations were detected by using microplate method. Prebiotic ingredients were used to form biofilm with highest viable probiotic cell counts and optimal concentrations of prebiotic ingredients were determined according to the response surface method. Biofilm produced by Lactobacillus casei Shirota and Lactobacillus rhamnosus contained 9.46 and 9.66 log cfu/mL viable cell counts, respectively. Optimal prebiotic concentrations were found 3% casein peptone-0% fructo-oligosaccharides (FOS) for biofilm formation with highest viable cell counts by L. casei Shirota and 1.5% casein peptone-1.5% FOS for biofilm formation with highest viable cell counts by L. rhamnosus. Probiotic biofilms exhibited inactivation against growth of L. monocytogenes and caused a reduction of 0.66- 2.01 log cfu/mL for planktonic L. monocytogenes and 0.40-1.69 log cfu/mL for L. monocytogenes biofilm. Planktonic cells of L. monocytogenes were observed to be more susceptible to probiotic biofilms than biofilm of L. monocytogenes. Biofilm of L. rhamnosus showed higher inhibition effect on L. monocytogenes growth than L. casei Shirota. These findings showed that biofilms of probiotic Lactobacillus strains used in this study may be excellent candidate for controlling of pathogenic bacteria
___
- 1. Bielecka M, Biedrzycka E, Majkowska A: Selection of probiotics and prebiotics for synbiotics and confirmation of their in vivo effectiveness. Food Res Int, 35, 125-131, 2002. DOI: 10.1016/S0963-9969(01)00173-9
- 2. Saad N, Delattre C, Urdaci M, Schmitter JM, Bressollier P: An overview of the last advances in probiotic and prebiotic field. LWT-Food Sci Technol, 50, 1-16, 2013. DOI: 10.1016/j.lwt.2012.05.014
- 3. Collado MC, Meriluoto J, Salminen S: Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol, 226, 1065-1073, 2008. DOI: 10.1007/s00217-007-0632-x
- 4. Gómez NC, Ramiro JMP, Quecan BXV, Franco BDGM: Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium and Escherichia coli O157:H7 biofilms formation. Front Microbiol, 7, 863, 2016. DOI: 10.3389/ fmicb.2016.00863
- 5. Slama R, Kouidhi B, Zmantar T, Chaieb K, Bakhrouf A: Anti-Listerial and anti-biofilm activities of potential probiotic Lactobacillus strains isolated from Tunisian traditional fermented food. J Food Safety, 33, 8-16, 2013. DOI: 10.1111/jfs.12017
- 6. Dertli E: Isolation and identification of an exopolysaccharide producer Streptococcus thermophilus strain from Turkish yogurt. Kafkas Univ Vet Fak Derg, 21, 229-232, 2015. DOI: 10.9775/kvfd.2014.12116
- 7. Aslım B, Onbasılı D, Yuksekdag ZN: Determination of lactic acid production and antagonistic activity against Helicobacter pylori of L. delbrueckii subsp. bulgaricus and S. thermophilus strains. Kafkas Univ Vet Fak Derg, 17, 609-614, 2011. DOI: 10.9775/kvfd.2011.4326
- 8. Jones SE, Versalovic J: Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol, 11, 35, 2009. DOI: 10.1186/1471-2180-9-35
- 9. Oral NB, Vatansever L, Aydın BD, Sezer Ç, Güven A, Gülmez M, Başer KHC, Kürkçüoğlu M: Effect of oregano essential oil on biofilms formed by Staphylococci and Escherichia coli. Kafkas Univ Vet Fak Derg, 16 (Suppl. A): S23-S29, 2010. DOI: 10.9775/kvfd.2009.1147
- 10. Gürbüz Ü, Kahraman HA, Telli AE, Külcü DB: The effect of eugenol on survival of Listeria monocytogenes inoculated inegöl meatball. Kafkas Univ Vet Fak Derg, 22, 49-55, 2015. DOI: 10.9775/kvfd.2015.13850
- 11. Guerrierri E, Niederhausern S, Messi P, Sabia C, Iseppi R, Anacarso I, Bondi M: Use of lactic acid bacteria biofilms for the control of Listeria monocytogenes in a small-scale model. Food Control, 20, 861-865, 2009. DOI: 10.1016/j.foodcont.2008.11.001
- 12. Kokare CR, Chakraborty S, Khopade AN, Mahadik KR: Biofilms: Importance and applications. Indian J Biotech, 8, 159-168, 2009.
- 13. İkiz S, Dümen E, Kahraman BB, Bayrakal GM, Kahraman T, Ergin S: Investigation of Salmonella spp. and Listeria monocytogenes in seafood by cultural methods and PCR. Kafkas Univ Vet Fak Derg, 22, 397-401, 2016. DOI: 10.9775/kvfd.2015.14808
- 14. Krolasik J, Zofia Z, Zakowska Z, Krepska M, Klimek M: Resistance of bacterial biofilms formed on stainless steel surface to disinfecting agents. Pol J Microbiol, 59 (4): 281-287, 2010.
- 15. Dutta V: Characterization of disinfectants and phage resistance determinants of Listeria monocytogenes. Degree of Doctor of philosophy, Microbiology, 266p, The Graduate Faculty of North Carolina State University, Raleig, North Carolina, 2011.
- 16. Habimana O, Guillier L, Kulakauskas S, Briandet R: Spatial competition with Lactococcus lactis in mixed-species continuous-flow biofilms inhibits Listeria monocytogenes growth. Biofouling, 27, 1065- 1072, 2011. DOI: 10.1080/08927014.2011.626124
- 17. Bendali F, Hebraud M, Sadoun D: Anti-bacterial and anti-adherence activities of a probiotic strain of Lactobacillus paracasei against Listeria monocytogenes. Int J Appl Microbiol Biotechnol Res, 2, 52-63, 2014.
- 18. Kermanshahi RK, Qamsari EM: Inhibition effect of lactic acid bacteria against food born pathogen, Listeria monocytogenes. Appl Food Biotechnol, 2, 11-19, 2015.
- 19. Terraf MCL, Tomás MSJ, Rault L, Loir YL, Even S, Nader-Macías MEF: Biofilms of vaginal Lactobacillus reuteri CRL 1324 and Lactobacillus rhamnosus CRL 1332: Kinetics of formation and matrix characterization. Arch Microbiol, 198, 689-700, 2016. DOI: 10.1007/s00203-016-1225-5
- 20. Aoudia N, Rieu A, Briandet R, Deschamps J, Chluba J, Jego G, Garrido C, Guzzo J: Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiol, 53, 51-59, 2016. DOI: 10.1016/j.fm.2015.04.009
- 21. Woo J, Ahn J: Probiotic-mediated competition, exclusion and displacement in biofilm formation by food-borne pathogen. Lett Appl Microbiol, 56, 307-313, 2013. DOI: 10.1111/lam.12051
- 22. Bondi M, Guerrieri E, Niederhausern De S, Messi P, Sabia C, Iseppi R, Anacarso I: Use of lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes in a small-scale model. Food Control, 20, 861-865, 2008. DOI: 10.1016/j.foodcont.2008.11.001
- 23. Kubota H, Senda S, Tokuda H, Uchiyama H, Nomura N: Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. JCM1149. Food Microbiol, 26, 592-597, 2009. DOI: 10.1016/j.fm.2009.04.001
- 24. Van der Veen S, Abee T: Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid. Int J Food Microbiol, 144, 421-431, 2011. DOI: 10.1016/j.ijfoodmicro.2010.10.029
- 25. Chen MJ, Chen KN, Lin CW: Optimization of incorporated prebiotics as coating materials for probiotic microencapsulation. J Food Sci, 70 (5): M260-M267, 2005. DOI: 10.1111/j.1365-2621.2005.tb09981.x
- 26. Lebeer S, Verhoeven TLA, Velez MP, Vanderleyden J, De Keersmaecker SCJ: Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microb, 73, 6768-6775, 2007. DOI: 10.1128/AEM.01393-07
- 27. Pérez-Ibarreche M, Castellano P, Vignolo G: Evaluation of antiListeria meat borne Lactobacillus for biofilm formation on selected abiotic surfaces. Meat Sci, 96, 295-303, 2014. DOI: 10.1016/j.meatsci.2013.07.010
- 28. Zhao T, Podtburg TC, Zhao P, Chen D, Baker DA, Cords B: Reduction by competitive bacteria of Listeria monocytogenes in biofilms and Listeria in floor drains in a ready-to-eat poultry processing plant. J Food Prot, 74, 601-607, 2013. DOI: 10.4315/0362-028X.JFP-12-323