Deletion of lpsA Gene of Brucella melitensis Strain M5-90 Promotes Caspase-11 Induced Non-classical Pathways Pyroptosis in Brucella-infected Mouse Macrophage Cells

Brucella utilizes diverse virulence factors to modulate the infectious cycle and lifestyle associated with eukaryotic hosts. Lipopolysaccharides (LPS) play an important role in the establishment of persistent infections of Brucella, but its mechanism in host cell to interfere with the host’s specific signaling pathway related to the elimination of Brucella is still not clear. LpsA, a glycosyl transferase, involves in the biosynthesis of LPS, and may aff ect the intracellular survival of Brucella. This study aimed to investigate the eff ects of lpsA on pyroptosis in Brucella-infected macrophage cells. We constructed the lpsA mutant strain (M5-90ΔlpsA) and the complementary strain (M5-90ΔlpsA-C) of Brucella melitensis strain M5-90 infected mouse macrophages to detect pyroptosis. We found that the inactivation of the lpsA gene weakened the ability of LPS gains access to cytosol during Brucella mutant infections, and reduced the survival of Brucella. Western blot and quantitative real-time PCR assays showed that the mRNA and protein levels of caspase-11 and NOD-like receptor family pyrin domain-containing 3 in M5-90ΔlpsA group were higher than those observed in M5-90 group. These results indicated M5-90ΔlpsA promoted the pyroptosis of RAW264.7 cells (a mouse macrophage cell line) after Brucella infection. The finding reveals that Brucella lpsA plays a partial role in innate immunity and infl ammatory response by inhibiting the LPS-induced atypical pyroptosis pathway.

Brucella melitensis M5-90 Suşunun lpsA Geninin Silinmesi Brucella İle Enfekte Fare Makrofaj Hücrelerinde Kaspaz-11 ile İndüklenen Klasik Olmayan Piroptozis Yolaklarını Teşvik Eder

Brucella, ökaryotik konakçılarla ilişkili enfeksiyon döngüsünü ve yaşam biçimini düzenlemek için çeşitli virülens faktörlerini kullanır. Lipopolisakkaritler (LPS), Brucella’nın kalıcı enfeksiyonlarının oluşmasında önemli bir rol oynar, ancak konakçı hücrede, Brucella’nın ortadan kaldırılmasıyla ilgili konakçının spesifik sinyalizasyonuna müdahale etme mekanizması halen net değildir. Bir glikozil transferaz olan LpsA, LPS’nin biyosentezinde görev alır ve Brucella’nın hücre içi yaşama yeteneğini etkileyebilir. Bu çalışmada lpsA’nın Brucella ile enfekte makrofaj hücrelerinde piroptoz üzerine etkilerinin araştırılması amaçlanmıştır. Piroptozu saptamak için Brucella melitensis M5-90 suşunun lpsA mutantı (M5-90ΔlpsA) ve komplementer suşu (M5- 90ΔlpsA-C) ile enfekte olmuş fare makrofajları oluşturduk. LpsA geninin inaktivasyonunun, LPS’nin Brucella mutant enfeksiyonları sırasında sitozole giriş yeteneğini zayıfl attığını ve Brucella’nın yaşama yeteneğini azalttığını saptadık. Western Blot ve kantitatif real-time PCR deneyleri, M5-90 grubuna oranla M5-90ΔlpsA grubunda kaspaz-11 ve NOD-benzeri reseptör ailesi pyrin domain-containing 3’ün mRNA ve protein seviyelerinin daha yüksek olduğunu gösterdi. Bu bulgular, M5-90ΔlpsA’nın, Brucella enfeksiyonu sonrası bir fare makrofaj hücre hattı olan RAW264.7 hücrelerinde piroptoza yol açtığını gösterdi. Bu bulgu, Brucella lpsA’sının, LPS ile indüklenen atipik piroptoz yolunu inhibe ederek doğal bağışıklık ve enfl amatuar yanıtta kısmi bir rol oynadığını ortaya koymaktadır..

___

1. Al Dahouk S, Köhler S, Occhialini A, Jiménez de Bagüés MP, Hammerl JA, Eisenberg T, Vergnaud G, Cloeckaert A, Zygmunt MS, Whatmore AM, Melzer F, Drees KP, Foster JT, Wattam AR, Scholz HC: Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts. Sci Rep, 7:44420, 2017. DOI: 10.1038/srep44420

2. Zhang J, Li M, Li Z, Shi J, Zhang Y, Deng X, Liu L, Wang Z, Qi Y, Zhang H: Deletion of the Type IV secretion system effector VceA promotes autophagy and inhibits apoptosis in Brucella-infected human trophoblast cells. Curr Microbiol, 76 (4): 510-519, 2019. DOI: 10.1007/ s00284-019-01651-6

3. Ke YH, Wang YF, Li WF, Chen ZL: Type IV secretion system of Brucella spp. and its effectors. Front Cell Infect Microbiol, 5:72, 2015. DOI: 10.3389/ fcimb.2015.00072

4. Celli J: Surviving inside a macrophage: The many ways of Brucella. Res Microbiol, 157, 93-98, 2006. DOI: 10.1016/j.resmic.2005.10.002

5. Gorvel JP, Moreno E: Brucella intracellular life: From invasion to intracellular replication. Vet Microbiol, 90 (1-4): 281-297, 2002. DOI: 10.1016/ s0378-1135(02)00214-6

6. Boschiroli ML, Ouahrani-Bettache S, Foulongne V, Michaux- Charachon S, Bourg G, Allardet-Servent A, Cazevieille C, Lavigne JP, Liautard JP, Ramuz M, O’Callaghan D: Type IV secretion and Brucella virulence. Vet Microbiol, 90 (1-4): 341-348, 2002. DOI: 10.1016/S0378- 1135(02)00219-5

7. Marchesini MI, Morrone Seijo SM, Guaimas FF, Comerci DJ: A T4SS effector targets host cell Alpha-Enolase contributing to Brucella abortus intracellular lifestyle. Front Cell Infect Microbiol, 6:153, 2016. DOI: 10.3389/fcimb.2016.00153

8. Zhang Y, Li T, Zhang J, Li Z, Zhang Y, Wang Z, Feng H, Wang Y, Chen C, Zhang H: The Brucella melitensis M5-90 phosphoglucomutase (PGM) mutant is attenuated and confers protection against wild-type challenge in BALB/c mice. World J Microbiol Biotechnol, 32 (4): 58, 2016. DOI: 10.1007/ s11274-016-2015-6

9. Haag AF, Myka KK, Arnold MFF, Caro-Hernández P, Ferguson GP: Importance of lipopolysaccharide and cyclic β-1,2-Glucans in Brucella- Mammalian infections. Int J Microbiol, 2010:124509, 2010. DOI: 10.1155/ 2010/124509

10. Lapaque N, Forquet F, de Chastellier C, Mishal Z, Jolly G, Moreno E, Moriyon I, Heuser JE, He HT, Gorvel JP: Characterization of Brucella abortus lipopolysaccharide macrodomains as mega rafts. Cell Microbiol, 8 (2): 197-206, 2006. DOI: 10.1111/j.1462-5822.2005.00609.x

11. Fernandez-Prada CM, Zelazowska EB, Nikolich M, Hadfield TL, Roop RM II, Robertson GL, Hoover DL: Interactions between Brucella melitensis and human phagocytes: Bacterial surface O-Polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect Immun, 71 (4): 2110-2119, 2003. DOI: 10.1128/iai.71.4.2110-2119.2003

12. Lamkanfi M, Dixit VM: Inflammasomes: Guardians of cytosolic sanctity. Immunol Rev, 227 (1): 95-105, 2009. DOI: 10.1111/j.1600-065X. 2008.00730.x

13. Rathinam VAK, Vanaja SK, Fitzgerald KA: Regulation of inflammasome signaling. Nat Immunol, 13 (4): 333-342, 2012. DOI: 10.1038/ni.2237

14. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 535, 153-158, 2016. DOI: 10.1038/nature18629

15. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM: Non-canonical inflammasome activation targets caspase-11. Nature, 479, 117-121, 2011. DOI: 10.1038/nature10558

16. Rathinam VAK, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, Leong JM, Fitzgerald KA: TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by Gram-negative bacteria. Cell, 150 (3): 606-619, 2012. DOI: 10.1016/j.cell.2012.07.007

17. Yang D, He Y, Muñoz-Planillo R, Liu Q, Núñez G: Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity, 43 (5): 923-932, 2015. DOI: 10.1016/j.immuni.2015.10.009

18. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 526, 660-665, 2015. DOI: 10.1038/nature15514

19. Gaidt MM, Hornung V: Pore formation by GSDMD is the effector mechanism of pyroptosis. EMBO J, 35, 2167-2169, 2016. DOI: 10.15252/ embj.201695415

20. Cerqueira DM, Gomes MTR, Silva ALN, Rungue M, Assis NRG, Guimarães ES, Morais SB, Broz P, Zamboni DS, Oliveira SC: Guanylatebinding protein 5 licenses caspase-11 for Gasdermin-D mediated host resistance to Brucella abortus infection. PLoS Pathog, 14 (12): e1007519, 2018. DOI: 10.1371/journal.ppat.1007519

21. Zygmunt MS, Hagius SD, Walker JV, Elzer PH: Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host. Microbes Infect, 8 (14-15): 2849-2854, 2006. DOI: 10.1016/j. micinf.2006.09.002

22. Yang J, Zhao Y, Zhang P, Li Y, Yang Y, Yang Y, Zhu J, Song X, Jiang G, Fan J: Hemorrhagic shock primes for lung vascular endothelial cell pyroptosis: Role in pulmonary inflammation following LPS. Cell Death Dis, 7:e2363, 2016. DOI: 10.1038/cddis.2016.274

23. Li Z, Wang S, Zhang H, Zhang J, Xi L, Zhang J, Chen C: Transcriptional regulator GntR of Brucella abortus regulates cytotoxicity, induces the secretion of inflammatory cytokines and affects expression of the type IV secretion system and quorum sensing system in macrophages. World J Microbiol Biotechnol, 33:60, 2017. DOI: 10.1007/s11274-017-2230-9

24. Cui M, Wang T, Xu J, Ke Y, Du X, Yuan X, Wang Z, Gong C, Zhuang Y, Lei S, Su X, Wang X, Huang L, Zhong Z, Peng G, Yuan J, Chen Z, Wang Y: Impact of Hfq on global gene expression and intracellular survival in Brucella melitensis. PLoS One, 8 (8): e71933, 2013. DOI: 10.1371/journal. pone.0071933

25. Rosenfeld Y, Shai Y: Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: Role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta, 1758 (9): 1513-1522, 2006. DOI: 10.1016/j.bbamem.2006.05.017

26. Steimle A, Autenrieth IB, Frick JS: Structure and function: Lipid A modifications in commensals and pathogens. Int J Med Microbiol, 306 (5): 290-301, 2016. DOI: 10.1016/j.ijmm.2016.03.001

27. Lalsiamthara J, Lee JH: Brucella lipopolysaccharide reinforced Salmonella delivering Brucella immunogens protects mice against virulent challenge. Vet Microbiol, 205, 84-91, 2017. DOI: 10.1016/j.vetmic.2017.05.012

28. Mancilla M: Smooth to rough dissociation in Brucella: The missing link to virulence. Front Cell Infect Microbiol, 5:98, 2016. DOI: 10.3389/ fcimb.2015.00098

29. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi- Takamura S, Miyake K, Zhang J, Lee WP, Muszyński A, Forsberg LS, Carlson RW, Dixit VM: Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science, 341 (6151): 1246-1249, 2013. DOI: 10.1126/science.1240248

30. Kohler S, Foulongne V, Ouahrani-Bettache S, Bourg G, Teyssier J, Ramuz M, Liautard JP: The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci U S A, 99 (24): 15711- 15716, 2002. DOI: 10.1073/pnas.232454299

31. Vanaja SK, Russo AJ, Behl B, Banerjee I, Yankova M, Deshmukh SD, Rathinam VAK: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell, 165 (5): 1106-1119, 2016. DOI: 10.1016/j.cell.2016.04.015

32. Thurston TLM, Matthews SA, Jennings E, Alix E, Shao F, Shenoy AR, Birrell MA, Holden DW: Growth inhibition of cytosolic Salmonella by caspase-1 and caspase-11 precedes host cell death. Nat Commun, 7:13292, 2016. DOI: 10.1038/ncomms13292

33. Chen F, He Y: Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus. PLoS One, 4(8): e6830, 2009. DOI: 10.1371/journal.pone.0006830

34. Chen F, Ding X, Ding Y, Xiang Z, Li X, Ghosh D, Schurig GG, Sriranganathan N, Boyle SM, He Y: Proinflammatory caspase-2-mediated macrophage cell death induced by a rough attenuated Brucella suis strain. Infect Immun, 79 (6): 2460-2469, 2011. DOI: 10.1128/IAI.00050-11

35. Li T, Xu Y, Liu L, Huang M, Wang Z, Tong Z, Zhang H, Guo F, Chen C: Brucella melitensis 16M regulates the effect of AIR domain on inflammatory factors, autophagy, and apoptosis in mouse macrophage through the ROS signaling pathway. PLoS One, 11 (12): e0167486, 2016. DOI: 10.1371/journal.pone.0167486

36. Early JO, Menon D, Wyse CA, Cervantes-Silva MP, Zaslona Z, Carroll RG, Palsson-McDermott EM, Angiari S, Ryan DG, Corcoran SE, Timmons G, Geiger SS, Fitzpatrick DJ, O’Connell D, Xavier RJ, Hokamp K, O’Neill LAJ, Curtis AM: Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2. Proc Natl Acad Sci U S A, 115 (36): E8460-E8468, 2018. DOI: 10.1073/pnas.1800431115

37. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J: NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity, 20 (3): 319-325, 2004. DOI: 10.1016/s1074-7613(04)00046-9
Kafkas Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • ISSN: 1300-6045
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1995
  • Yayıncı: Kafkas Üniv. Veteriner Fak.
Sayıdaki Diğer Makaleler

Simental Süt İneklerinde Tırnak Bozukluklarının Süt Üretimine Etkisi

Zvonko ZLATANOVIĆ, Slavča HRISTOV, Branislav STANKOVIĆ, Marko CINCOVIĆ, Dimitar NAKOV, Jovan BOJKOVSKI

Eff ects of Kefir on Blood Parameters and Intestinal Microfl ora in Rats: An Experimental Study

BÜLENT ÖZSOY, Zafer CANTEKİN, Sakine YALÇIN, Hamdullah Suphi BAYRAKTAR

Türkiye’de Veteriner Hekimliği Eğitiminde Su Ürünleri ve Balıkçılık: Tarihsel Süreç ve Son Gelişmeler

Aytaç ÜNSAL ADACA, Berfin MELİKOĞLU GÖLCÜ, Asuman UYGUNTÜRK

CD46 Reseptörünün RNAi İnhibisyonu BVDV Enfeksiyonuna Hücre Direncini Artırır

Shengwei HU, Ruirui HU, Liang FENG, Tao GUO, Rui YAO, Yaxin LI, Xiaokui WANG, Taotao MI

vesi Koyunu ve Koçunda Kafatası ve Mandibulanin Geometrik Morfometrik Analizi

Mustafa Orhun DAYAN, İsmail DEMİRCİOĞLU, Yasin DEMİRASLAN, İftar GÜRBÜZ

Deletion of lpsA Gene of Brucella melitensis Strain M5-90 Promotes Caspase-11 Induced Non-classical Pathways Pyroptosis in Brucella-infected Mouse Macrophage Cells

Shengnan SONG, Yajun YANG, Hai JIANG, Meihua YANG, Yuanzhi WANG

Fisheries and Aquaculture in Veterinary Medical Education in Turkey: History and Recent Developments

Berfin MELİKOĞLU GÖLCÜ, Asuman UYGUNTÜRK, Aytaç ÜNSAL ADACA

E ects of Probiotic (Lactobacillus farciminis) Supplementation in Quail (Coturnix coturnix japonica) Rations on Growth Performance, Blood Antioxidant Capacity and Cecal Some Short-Chain Fatty Acid Concentrations

Özlem Durna AYDIN, GÜLTEKİN YILDIZ, Oğuz MERHAN

Kıl Keçilerinde Gebeliğin Farklı Aşamalarında Oksidanların, Antioksidanların ve Hormonların Dinamikleri

Leyla MİS, Memiş BOLACALI, Funda EŞKİ, Nebi ÇETİN, Zahid NASEER

Determination of AFM1 Levels of Mare’s Milk and Koumiss Produced in the Highlands of the Kyrgyz Republic

Meryem AYDEMİR ATASEVER, Hayrunni̇sa ÖZLÜ, Fatih Ramazan İSTANBULLUGİL, Mustafa ATASEVER