NUMERICAL INVESTIGATION OF FORCED CONVECTION OF NANOFLUID IN MICROCHANNELS HEAT SINKS

NUMERICAL INVESTIGATION OF FORCED CONVECTION OF NANOFLUID IN MICROCHANNELS HEAT SINKS

This paper presents a numerical study of laminar forced convective flow of nanofluid-based water/Al2O3 in a two-dimensional horizontal microchannel heat sink. The governing equations are solved by using the finite volume method based on simple algorithm. The effect of solid nanoparticles on the heat transfer is investigated after comparing our results with experimental data. The founding results showed that the use of nanofluid has enhanced the heat transfer in comparison with pure fluid, and the increasing of Al2O3 concentration enhances the thermal and dynamic parameters. Nusselt number and friction coefficient have been enhanced with the increasing of Reynolds number. This work contributes to ameliorate the cooling systems by integrating the nanofluids in the next generation of microchannels heat sinks.

___

  • [1] Tuckerman, D. B., Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron Device Letters, 2(5), 126-129. [2] Chai, L., Xia, G., Zhou, M., Li, J., Qi, J. (2013). Optimum thermal design of interrupted microchannel heat sink with rectangular ribs in the transverse microchambers. Applied Thermal Engineering, 51(1-2), 880-889.
  • [3] Weilin, Q., Mala, G. M., Dongqing, L. (2000). Pressure-driven water flows in trapezoidal silicon microchannels. International Journal of Heat and Mass Transfer, 43(3), 353-364.
  • [4] Gururatana, S. (2012). Numerical simulation of micro-channel heat sink with dimpled surfaces. American Journal of Applied Sciences, 9(3), 399.
  • [5] Belhadj, A., Bouchenafa, R., Saim, R. (2018). A Numerical study of forced convective flow in microchannels heat sinks with periodic expansion-constriction cross section. Journal of Thermal Engineering, 4(3), 1912-1925.
  • [6] Belhadj. A, Etude Thermo-énergétique d’un écoulement convective forcé à l’intérieur des microcanaux, Thèse de Master, 2014, Université de Tlemcen, Algeria.
  • [7] Masuda, H., Ebata, A., Teramae, K. (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei 7(4):227-233.
  • [8] Choi, S. U., Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP--84938; CONF-951135--29). Argonne National Lab., IL (United States).
  • [9] Pak, B. C., Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11(2), 151-170.
  • [10] Das, S. K., Putra, N., Thiesen, P., Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125(4), 567-574.
  • [11] Li, J. (2008). Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS.PhD Thesis.
  • [12] Raisi, A., Ghasemi, B., Aminossadati, S. M. (2011). A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions. Numerical Heat Transfer, Part A: Applications, 59(2), 114-129.
  • [13] Murshed, S. S., Leong, K. C., Yang, C., Nguyen, N. T. (2008). Convective heat transfer characteristics of aqueous TiO2 nanofluid under laminar flow conditions. International Journal of Nanoscience, 7(06), 325-331.
  • [14] Izadi, M., Shahmardan, M. M., Rashidi, A. M. (2013). Study on thermal and hydrodynamic indexes of a nanofluid flow in a micro heat sink. Transport Phenomena in Nano and Micro Scale, 1(1), 53-63
  • [15] Izadi, M., Shahmardan, M. M., Rashidi, A. M. (2013). Study on thermal and hydrodynamic indexes of a nanofluid flow in a micro heat sink. Transport Phenomena in Nano and Micro Scale, 1(1), 53-63.
  • [16] Estellé, P., Halelfadl, S., Maré, T. (2015). Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview. Journal of Thermal Enginnering, 1(2), 381-390.
  • [17] Kherbeet, A. S., Mohammed, H. A., Salman, B. H., Ahmed, H. E., Alawi, O. A., Rashidi, M. M. (2015). Experimental study of nanofluid flow and heat transfer over microscale backward-and forward-facing steps. Experimental Thermal and Fluid Science, 65, 13-21.
  • [18] Kalteh, M., Abbassi, A., Saffar-Avval, M., Frijns, A., Darhuber, A., Harting, J. (2012). Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink. Applied Thermal Engineering, 36, 260-268.
  • [19] İlhan, B., Ertürk, H. (2017). Experimental characterization of laminar forced convection of hBN-water nanofluid in circular pipe. International Journal of Heat and Mass Transfer, 111, 500-507.
  • [20] Li, P., Xie, Y., Zhang, D., Xie, G. (2016). Heat transfer enhancement and entropy generation of nanofluids laminar convection in microchannels with flow control devices. Entropy, 18(4), 134.
  • [21] Jajja, S. A., Ali, W., Ali, H. M., Ali, A. M. (2014). Water cooled minichannel heat sinks for microprocessor cooling: Effect of fin spacing. Applied Thermal Engineering, 64(1-2), 76-82.
  • [22] Ali, H. M., Arshad, W. (2017). Effect of channel angle of pin-fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids. International Journal of Heat and Mass Transfer, 106, 465-472.
  • [23] Arshad, W., Ali, H. M. (2017). Graphene nanoplatelets nanofluids thermal and hydrodynamic performance on integral fin heat sink. International Journal of Heat and Mass Transfer, 107, 995-1001.
  • [24] Togun, H. (2016). Laminar CuO–water nano-fluid flow and heat transfer in a backward-facing step with and without obstacle. Applied Nanoscience, 6(3), 371-378.