ALTERNATIVE REFRIGERANTS FOR HCFC 22—A REVIEW

The aim of this paper is to determine the best available alternative which could replace existing refrigerant R22, with minimum or no changes in the air conditioning system. For this purpose, both the theoretical as well as experimental studies done in this area of research have been reviewed. The most popular HFC, R410A is having lower critical temperature, which restricts its usage in compression based systems working at higher condensing temperatures whereas for R407C, a change to synthetic lubricant is required and HC-290 is flammable. It is suggested that until the safety issue of use of hydrocarbon refrigerants in quantities exceeding 500gm is resolved, we should go for those mixtures of HFCs and HCs for which TEWI index is the lowest.

___

  • [1] Poggi, F., Macchi-Tejeda, H., Leducq, D., & Bontemps, A. (2008). Refrigerant charge in refrigerating systems and strategies of charge reduction. International Journal of Refrigeration, 31(3), 353-370.
  • [2] Palm, B. (2008). Hydrocarbons as refrigerants in small heat pump and refrigeration systems–a review. International journal of refrigeration, 31(4), 552-563.
  • [3] Calm, J. M. (2008). The next generation of refrigerants–Historical review, considerations, and outlook. international Journal of Refrigeration, 31(7), 1123-1133.
  • [4] Mohanraj, M., Muraleedharan, C., & Jayaraj, S. (2011). A review on recent developments in new refrigerant mixtures for vapour compression‐based refrigeration, air‐conditioning and heat pump units. International journal of energy research, 35(8), 647-669.
  • [5] Sarbu, I. (2014). A review on substitution strategy of non-ecological refrigerants from vapour compression-based refrigeration, air-conditioning and heat pump systems. International Journal of Refrigeration, 46, 123-141.
  • [6] Arora, A., Arora, B. B., Pathak, B. D., & Sachdev, H. L. (2007). Exergy analysis of a vapour compression refrigeration system with R-22, R-407C and R-410A. International journal of Exergy, 4(4), 441-454.
  • [7] Du Pont (accessed Jan 14, 2015). http://www.isceon.com/uk
  • [8] Menlik, T., Demircioğlu, A., & Özkaya, M. G. (2013). Energy and exergy analysis of R22 and its alternatives in a vapour compression refrigeration system. International Journal of Exergy, 12(1), 11-30.
  • [9] Klein, S. A., Reindl, D. T., & Brownell, K. (2000). Refrigeration system performance using liquid-suction heat exchangers. International Journal of Refrigeration, 23(8), 588-596.
  • [10] Grace, I. N. & Tassou, S. A. (2000). In Simulation of the performance of alternative refrigerants in liquid chillers, International Refrigeration and Air Conditioning Conference Paper 513.
  • [11] Boumaza, M. M. (2007). A numerical Investigation and Comparison of Chlorines Compounds Refrigerants and their Potential Substitutes Operating at High Ambient Temperature Case for the Replacement of R22. Final Research Report.
  • [12] Rani, T. U., & Balachander, P. (2008). Numerical simulation of fin and tube condenser in a R22 system charged with R407C.
  • [13] Jia, S. (2009). Evaluation of HCFC alternative refrigerants. Heatcraft Worldwide Refrigeration.
  • [14] Aprea, C., Maiorino, A., & Mastrullo, R. (2011). Change in energy performance as a result of a R422D retrofit: An experimental analysis for a vapor compression refrigeration plant for a walk-in cooler. Applied energy, 88(12), 4742-4748.
  • [15] Han, X. H., Qiu, Y., Li, P., Xu, Y. J., Wang, Q., & Chen, G. M. (2012). Cycle performance studies on HFC-161 in a small-scale refrigeration system as an alternative refrigerant to HFC-410A. Energy and Buildings, 44, 33-38.
  • [16] Padmanabhan, V. M. V., & Palanisamy, S. K. (2013). Exergy efficiency and irreversibility comparison of R22, R134a, R290 and R407C to replace R22 in an air conditioning system. Journal of Mechanical Science and Technology, 27(3), 917-926.
  • [17] Bolaji, B. O., Abiala, I. O., Ismaila, S. O., & Borokinni, F. O. (2014). A theoretical comparison of two eco-friendly refrigerants as alternatives to r22 using a simple vapour compression refrigeration system. Transactions of FAMENA, 38(3), 59-70.
  • [18] La Rocca, A., La Rocca, V., Messineo, A., & Panno, D. (2014). Use of HFC fluids as suitable replacements in low-temperature refrigeration plants. Journal of Engineering and Applied Sciences, 9(1, Gennaio 2014), 74-79.
  • [19] Hewitt, N. J., & McMullan, J. T. (1997). The replacement of CFCs in refrigeration equipment by environmentally benign alternatives. Applied thermal engineering, 17(8-10), 955-972.
  • [20] Johansson, A., & Lundqvist, P. (1998). Optimal distribution of Condenser area for Retrofits. International Refrigeration and Air Conditioning Conference.
  • [21] Devotta, S., Waghmare, A. V., Sawant, N. N., & Domkundwar, B. M. (2001). Alternatives to HCFC-22 for air conditioners. Applied Thermal Engineering, 21(6), 703-715.
  • [22] Johansson, A., & Lundqvist, P. (2003). Replacement of R22 in existing installations: experiences from the Swedish phase out. Royal Institute of Technology, Department of Energy Technology, Stockholm, Sweden. [23] Calm, J. M., & Domanski, P. A. (2004). R-22 replacement status. ASHRAE journal, 46(8), 29.
  • [24] Horuz, I. (2004). Ozone-depleting substances, phase-out program and alternatives. International communications in heat and mass transfer, 31(4), 607-618.
  • [25] Chen, J., & Yu, J. (2008). Performance of a new refrigeration cycle using refrigerant mixture R32/R134a for residential air-conditioner applications. Energy and Buildings, 40(11), 2022-2027.
  • [26] Allgood, C. (2008). Refrigeration Regulations, Outlook, Transitions & Alternatives. ASHRAE Meeting 11 November.
  • [27] Emerson Network Power (2009). Comparing R407C and R410A as Alternatives for R22. http:/www. EmersonNetworkPower.com.
  • [28] Honeywell (accessed Jan 14, 2015). http//www.genetron.com
  • [29] Department for Environment, Food and Rural Affairs, UK, (2012). Guidance: F Gas and Ozone Regulations.
  • [30] Bitzer (accessed Jan 14, 2015). http://www.bitzer.de
  • [31] Bolaji, B. O. (2012). Performance of A R22 split-air-conditioner when retrofitted with ozone friendly refrigerants (R410A and R417A). Journal of Energy in Southern Africa, 23(3), 16-22.
  • [32] Vjacheslav, N., Rozhentsev, A., & Wang, C. C. (2001). Rationally based model for evaluating the optimal refrigerant mass charge in refrigerating machines. Energy Conversion and Management, 42(18), 2083-2095.
  • [33] Aprea, C., & Renno, C. (2004). Experimental comparison of R22 with R417A performance in a vapour compression refrigeration plant subjected to a cold store. Energy conversion and management, 45(11-12), 1807-1819.
  • [34] Spatz, M. W., & Motta, S. F. Y. (2004). An evaluation of options for replacing HCFC-22 in medium temperature refrigeration systems. International Journal of Refrigeration, 27(5), 475-483.
  • [35] Chen, W. (2008). A comparative study on the performance and environmental characteristics of R410A and R22 residential air conditioners. Applied thermal engineering, 28(1), 1-7.
  • [36] Mohanraj, M., Jayaraj, S., & Muraleedharan, C. (2009). Environment friendly alternatives to halogenated refrigerants—A review. International Journal of Greenhouse Gas Control, 3(1), 108-119.
  • [37] Wang, F. J., Tsai, K. I., Wang, Y. J., & Lee, H. C. (2011). Experimental investigation of a process cooling system retrofitted with HFC-404A refrigerant for precise manufacturing application. Journal of Mechanical Science and Technology, 25(2), 495-501.
  • [38] Wu, Y., Liang, X., Tu, X., & Zhuang, R. (2012). Study of R161 refrigerant for residential air-conditioning applications. International Refrigeration and Air Conditioning Conference Paper 1189.
  • [39] Aprea, C., Maiorino, A., & Mastrullo, R. (2012). Exergy analysis of a cooling system: experimental investigation on the consequences of the retrofit of R22 with R422D. International Journal of Low-Carbon Technologies, 9(1), 71-79.
  • [40] Bensafi, A., Mondot, M., & Durier, F.F. (1997). Experimental evaluation of some proposed R22 alternatives in chillers and unitary A/C equipment. Clima. Centre Technique des Industries Aérauliques et Thermiques (CETIAT), France.
  • [41] Aprea, C., & Greco, A. (2002). An exergetic analysis of R22 substitution. Applied Thermal Engineering, 22(13), 1455-1469.
  • [42] Devotta, S., Padalkar, A. S., & Sane, N. K. (2005). Performance assessment of HCFC-22 window air conditioner retrofitted with R-407C. Applied Thermal Engineering, 25(17-18), 2937-2949.
  • [43] Bolaji, B. O. (2011). Performance investigation of ozone-friendly R404A and R507 refrigerants as alternatives to R22 in a window air-conditioner. Energy and Buildings, 43(11), 3139-3143.
  • [44] Samuel, K. J., Govindarajulu, K., & Edison, G. (2014). An Experimental Investigation and Performance Evaluation of 1.5 TR Window Air-Conditioner by Using R22 R407C and R410A by Varying the Capillary Pitch. World Applied Sciences Journal, 29(11), 1468-1472.
  • [45] Payne, W. V., & Domanski, P. A. (2002). A comparison of an R22 and an R410a air conditioner operating at high ambient temperatures. National Institute of Standards and Technology Building Environment Division: Thermal Machinery Group Gaithersburg, Maryland, USA.
  • [46] Hwang, Y., Jin, D. H., & Radermacher, R. (2007). Comparison of R-290 and two HFC blends for walk-in refrigeration systems. International Journal of Refrigeration, 30(4), 633-641.
  • [47] Kulcar, B., Goricanec, D., & Krope, J. (2010). Economy of replacing a refrigerant in a cooling system for preparing chilled water. international journal of refrigeration, 33(5), 989-994.
  • [48] La Rocca, V., & Panno, G. (2011). Experimental performance evaluation of a vapour compression refrigerating plant when replacing R22 with alternative refrigerants. Applied energy, 88(8), 2809-2815.
  • [49] La Rocca, V., Messineo, A., & Panno, D. (2011, June). An experimental study of a refrigerating plant when replacing R22 with HFCs refrigerants. In XIV European Conference “The Latest Technologies in Air Conditioning and Refrigeration Industry”. IT.
  • [50] Jain, V., Kachhwaha, S. S., & Mishra, R. S. (2011). Comparative performance study of vapour compression refrigeration system with R22/R134a/R410A/R407C/M20. International journal of energy and environment, 2(2), 297-310.
  • [51] Qureshi, B. A., & Zubair, S. M. (2011). Performance degradation of a vapor compression refrigeration system under fouled conditions. International Journal of Refrigeration, 34(4), 1016-1027.
  • [52] Lee, D. Y., Ahn, Y., Kim, Y., Chang, Y. S., & Nam, L. (2002). Experimental investigation on the drop-in performance of R407C as a substitute for R22 in a screw chiller with shell-and-tube heat exchangers. International journal of refrigeration, 25(5), 575-585.
  • [53] Aprea, C., Mastrullo, R., Renno, C., & Vanoli, G. P. (2004). An evaluation of R22 substitutes performances regulating continuously the compressor refrigeration capacity. Applied Thermal Engineering, 24(1), 127-139.
  • [54] Llopis, R., Cabello, R., Sánchez, D., Torrella, E., Patiño, J., & Sánchez, J. G. (2011). Experimental evaluation of HCFC-22 replacement by the drop-in fluids HFC-422A and HFC-417B for low temperature refrigeration applications. Applied Thermal Engineering, 31(6-7), 1323-1331.
  • [55] Subiantoro, A., & Ooi, K. T. (2013). Economic analysis of the application of expanders in medium scale air-conditioners with conventional refrigerants, R1234yf and CO2. international journal of refrigeration, 36(5), 1472-1482.
  • [56] Jürgensen, H. (2016). Propane as R22-Replacement in Commercial Appliances. Danfoss Compressors GmbH.
  • [57] Saleh, B., & Wendland, M. (2006). Screening of pure fluids as alternative refrigerants. International journal of refrigeration, 29(2), 260-269.
  • [58] Granryd, E. (2001). Hydrocarbons as refrigerants—an overview. International journal of refrigeration, 24(1), 15-24.
  • [59] Copetti, J. B., Macagnan, M. H., Geyer, M., & Oliveski, R. C. (2005). The use of hydrocarbons propane and isobutane in refrigeration systems. In 18 th International Congress of mechanical Engineering-COBEM.
  • [60] Park, K. J., & Jung, D. (2008). Performance of R290 and R1270 for R22 applications with evaporator and condenser temperature variation. Journal of Mechanical Science and Technology, 22(3), 532-537.
  • [61] Bayrakçi, H. C., & Özgür, A. E. (2009). Energy and exergy analysis of vapor compression refrigeration system using pure hydrocarbon refrigerants. International Journal of Energy Research, 33(12), 1070-1075.
  • [62] Park, K. J., Lee, Y., & Jung, D. (2010). Performance of R170/R1270 mixture under air-conditioning and heat pumping conditions. Journal of mechanical science and technology, 24(4), 879-885.
  • [63] Dalkilic, A. S., & Wongwises, S. (2010). A performance comparison of vapour-compression refrigeration system using various alternative refrigerants. International Communications in Heat and Mass Transfer, 37(9), 1340-1349.
  • [64] Boumaza, M. (2010). Performances assessment of natural refrigerants as substitutes to CFC and HCFC in hot climate. Int. J. of Thermal & Environmental Engineering, 1(2), 125-130.
  • [65] Wan, T., Dou, Y., Wang, L., Yang, L., Zhou, X., Wan, D., & Hu, J. (2011). Environmental benefits for phase-out HCFC-22 in the residential air-conditioner sector in China. Advances in Climate Change Research, 2(2), 86-92.
  • [66] Farraj, A., Mallouh, M. A., Kalendar, A. R., & Al-Rzaq, A. (2012). Experimental Study of Solar Powered Air Conditioning Unit Using Drop–In Hydro Carbon Mixture to Replace R-22. JJMIE, 6(1).
  • [67] Prapainop, R. & Suen, K.O. (2012). Simulation of potential refrigerants for retrofit replacement. ARPN Journal of Engineering & Applied Science, 7(9), 1146-1151.
  • [68] Bolaji, B. O., & Huan, Z. (2012). Comparative analysis of the performance of hydrocarbon refrigerants with R22 in a sub-cooling heat exchanger refrigeration system. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 226(7), 882-891.
  • [69] Bolaji, B. (2014). Influence of sub-cooling on the energy performance of two ecofriendly R22 alternative refrigerants. Journal of Science and Technology (Ghana), 34(2), 73-83.
  • [70] Lampugnani, G., & Zgliczynski, M. (1996). R290 as a Substitute of R502 and R22 in Commercial Refrigeration and Air Conditioning, International Compressor Engineering Conference Paper 1087.
  • [71] Zaghdoudi, M. C., Maalej, S., Saad, Y., & Bouchaala, M. (2010). A comparative study on the performance and environmental characteristics of alternatives to R22 in residential air conditioners for Tunisian market. Journal of Environmental Science and Engineering, 4(12).
  • [72] Devotta, S., Padalkar, A. S., & Sane, N. K. (2005). Performance assessment of HC-290 as a drop-in substitute to HCFC-22 in a window air conditioner. International Journal of Refrigeration, 28(4), 594-604.
  • [73] Lect, K., & Al-Amir, Q. (2014). Performance evaluation of small scale air-conditioning system using R22 and alternative refrigerants. Journal of Engineering, 20(1).
  • [74] Agrawal, A. B., Dave, R. K., & Shrivastava, V. (2009). Replacing harmful refrigerant R22 in a bulk milk cooler. Indian Journal of Science and Technology, 2(9), 51-58.
  • [75] Zakrzewski, B., & Łokietek, T. (2010). Assessing the applicability of new refrigerants in marine cooling systems. Polish Maritime Research, 17(2), 55-59.
  • [76] Chinnaraj, C., Govindarajan, P., & Vijayan, R. (2011). Influence of electronic expansion valve on the performance of small window air conditioner retrofitted with R407C and R290. Thermal Science, 15(suppl. 2), 327-339.
  • [77] Cheng, S., Wang, S., & Liu, Z. (2014). Cycle performance of alternative refrigerants for domestic air-conditioning system based on a small finned tube heat exchanger. Applied thermal engineering, 64(1-2), 83-92.
  • [78] Padalkar, A. S., Mali, K. V., & Devotta, S. (2014). Simulated and experimental performance of split packaged air conditioner using refrigerant HC-290 as a substitute for HCFC-22. Applied Thermal Engineering, 62(1), 277-284.
  • [79] Domanski, P. A., & Didion, D. A. (1993). Theoretical evaluation of R22 and R502 alternatives (No. DOE/CE/23810-7). Air-Conditioning and Refrigeration Technology Inst., Inc., Arlington, VA (United States); National Inst. of Standards and Technology (NEL), Gaithersburg, MD (United States). Building Environment Div.
  • [80] Devotta, S. (1995). Alternative heat pump working fluids to CFCs. Heat Recovery Systems and CHP, 15(3), 273-279.
  • [81] Chang, Y. S., Kim, M. S., & Ro, S. T. (2000). Performance and heat transfer characteristics of hydrocarbon refrigerants in a heat pump system. International journal of refrigeration, 23(3), 232-242.
  • [82] Jung, D., Song, Y., & Park, B. (2000). Performance des mélanges de frigorigènes utilisés pour remplacer le HCFC22. International Journal of Refrigeration, 23(6), 466-474.
  • [83] Roberts, N. A., & Chambers, O. R. (2004). Energy saving refrigerant blends comprising R125, R134a, R600 or R600a. International Refrigeration and Air Conditioning Conference Paper 632.
  • [84] Arcaklıoğlu, E., Çavuşoğlu, A., & Erişen, A. (2006). Thermodynamic analysis of refrigerant mixtures for possible replacements for CFCs by an algorithm compiling property data. Applied Thermal Engineering, 26(4), 430-439.
  • [85] Park, K. J., Seo, T., & Jung, D. (2007). Performance of alternative refrigerants for residential air-conditioning applications. Applied energy, 84(10), 985-991.
  • [86] Park, K. J., Shim, Y. B., & Jung, D. (2008). Performance of R433A for replacing HCFC22 used in residential air-conditioners and heat pumps. Applied Energy, 85(9), 896-900.
  • [87] Park, K. J., Shim, Y. B., & Jung, D. (2009). Experimental performance of R432A to replace R22 in residential air-conditioners and heat pumps. Applied Thermal Engineering, 29(2-3), 597-600.
  • [88] Cleland, D. J., Keedwell, R. W., & Adams, S. R. (2009). Use of hydrocarbons as drop-in replacements for HCFC-22 in on-farm milk cooling equipment. international journal of refrigeration, 32(6), 1403-1411. [89] Allgood, C. C., & Lawson, C. C. (2010). Performance of R-438A in R-22 refrigeration and air conditioning systems. International Refrigeration and Air Conditioning Conference at Purdue, July 12-15.
  • [90] Bock Compressors, (accessed Jan 20, 2015). www.bock.de
  • [91] Lopez, D.L.G. (2010). The replacement of R-22. Gas Technical Department of Gas Servei S.A.
  • [92] Cabello, R., Torrella, E., Llopis, R., Sánchez, D., & Larumbe, J. A. (2013). Energy influence of the IHX with R22 drop-in and long-term substitutes in refrigeration plants. Applied Thermal Engineering, 50(1), 260-267.
  • [93] Ramu, N. S., Kumar, P. S., & Mohanraj, M. (2014). Energy performance assessment of R32/R125/R600a mixtures as possible alternatives to R22 in compression refrigeration systems. International Journal of Mechanical and Mechatronics Engineering IJMME–IJENS, 14(02), 12-22.
  • [94] Dalkilic, A. S., Mahian, O., & Wongwises, S. (2014). Selection of the most suitable refrigerant for a shell and tube condenser. Heat and Mass Transfer, 50(2), 183-197.
  • [95] Lorentzen, G. (1995). The use of natural refrigerants: a complete solution to the CFC/HCFC predicament. International journal of refrigeration, 18(3), 190-197.
  • [96] McMullan, J. T. (2002). Refrigeration and the environment—issues and strategies for the future. International Journal of Refrigeration, 25(1), 89-99.
  • [97] Tao, Y. B., He, Y. L., & Tao, W. Q. (2010). Exergetic analysis of transcritical CO2 residential air-conditioning system based on experimental data. Applied Energy, 87(10), 3065-3072.
  • [98] Benhadid-Dib, S., & Benzaoui, A. (2012). Refrigerants and their environmental impact Substitution of hydro chlorofluorocarbon HCFC and HFC hydro fluorocarbon. Search for an adequate refrigerant. Energy Procedia, 18, 807-816.
  • [99] Sarbu, I., & Valea, E. S. Ecological refrigerants used in refrigeration, air-conditioning and heat pump systems. Proceedings of the 2014International Conference on Power Systems, Energy, Environment.