A NUMERICAL STUDY OF FORCED CONVECTIVE FLOW IN MICROCHANNELS HEAT SINKS WITH PERIODIC EXPANSION-CONSTRICTION CROSS SECTION

This paper aims to study numerically the laminar convective heat transfer of ionized water flow inside rectangular heat sinks with periodic expansion-constriction cross-section; each heat sink consists of parallel microchannels system with 4 mm wide and 0.1 mm deep in constant cross-section segment.  Two-dimensional laminar numerical simulations, based on Navier-Stoks equations and energy equation, are obtained under the same boundary conditions for different microchannels. In this study, the heat transfer and pressure drop inside microchannels with cross-section (cylindrical grooves and triangular cavities) are compared with that of simple smooth microchannel at Reynolds number ranging from 150-1500; an increase in pressure drop of 44% for all microchannels  is observed with Reynolds number increasing.  The obtained results indicate an enhancement in Nusselt number for all microchannels at all Reynolds number values with a maximum enhancement of 36%, these ameliorated thermal parameters attribute to enhance the heat transfer efficiency of proposed microchannels. Which improve the effect of periodic expansion-constriction cross-section on the heat transfer performance for microelectromechanical systems (MEMS) cooling phenomena.  

___

  • [1] Berlin, A. A., & Gabriel, K. J. (1997). Distributed MEMS: New challenges for computation. IEEE Computational Science and Engineering, 4(1), 12-16.
  • [2] Tuckerman, D. B., & Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron device letters, 2(5), 126-129.
  • [3] Samalam, V. K. (1989). Convective heat transfer in microchannels. Journal of Electronic Materials, 18(5), 611-617.
  • [4] Peng, X. F., Peterson, G. P., & Wang, B. X. (1994). Heat transfer characteristics of water flowing through microchannels. Experimental Heat Transfer An International Journal, 7(4), 265-283.
  • [5] Peng, X. F., & Peterson, G. P. (1996). Convective heat transfer and flow friction for water flow in microchannel structures. International journal of heat and mass transfer, 39(12), 2599-2608.
  • [6] Li, J., & Peterson, G. P. (2005). Boiling nucleation and two-phase flow patterns in forced liquid flow in microchannels. International journal of heat and mass transfer, 48(23-24), 4797-4810.
  • [7] Margot, X., Hoyas, S., Gil, A., & Patouna, S. T. A. V. R. O. U. L. A. (2012). Numerical modelling of cavitation: validation and parametric studies.Engineering Applications of Computational Fluid Mechanics, 6(1), 15-24.
  • [8] Sheikholeslami, M., Vajravelu, K., & Rashidi, M. M. (2016). Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. International Journal of Heat and Mass Transfer, 92, 339-348.
  • [9] Sheikholeslami, M., Rashidi, M. M., & Ganji, D. D. (2015). Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid. Computer Methods in Applied Mechanics and Engineering, 294, 299-312.
  • [10] Sheikholeslami, M., Rashidi, M. M., & Ganji, D. D. (2015). Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid. Computer Methods in Applied Mechanics and Engineering, 294, 299-312.
  • [11] Farhanieh, B., Herman, Č., & Sundén, B. (1993). Numerical and experimental analysis of laminar fluid flow and forced convection heat transfer in a grooved duct. International journal of heat and mass transfer, 36(6), 1609-1617.
  • [12] Qu, W., & Mudawar, I. (2002). Analysis of three-dimensional heat transfer in micro-channel heat sinks. International Journal of heat and mass transfer, 45(19), 3973-3985.
  • [13] Chai, L., Xia, G., Zhou, M., Li, J., & Qi, J. (2013). Optimum thermal design of interrupted microchannel heat sink with rectangular ribs in the transverse microchambers. Applied Thermal Engineering, 51(1-2), 880-889. [14] Weilin, Q., Mala, G. M., & Dongqing, L. (2000). Pressure-driven water flows in trapezoidal silicon microchannels. International journal of heat and mass transfer, 43(3), 353-364.
  • [15] Ghaedamini, H., Lee, P. S., & Teo, C. J. (2013). Developing forced convection in converging–diverging microchannels. International Journal of Heat and Mass Transfer, 65, 491-499.
  • [16] Gong, L., Kota, K., Tao, W., & Joshi, Y. (2011). Parametric numerical study of flow and heat transfer in microchannels with wavy walls. Journal of Heat Transfer, 133(5), 051702.
  • [17] Zheng, Z., Fletcher, D. F., & Haynes, B. S. (2013). Laminar heat transfer simulations for periodic zigzag semicircular channels: chaotic advection and geometric effects. International Journal of Heat and Mass Transfer, 62, 391-401.
  • [18] Liu, Y., Cui, J., Jiang, Y. X., & Li, W. Z. (2011). A numerical study on heat transfer performance of microchannels with different surface microstructures. Applied Thermal Engineering, 31(5), 921-931.
  • [19] Xia, G., Chai, L., Zhou, M., & Wang, H. (2011). Effects of structural parameters on fluid flow and heat transfer in a microchannel with aligned fan-shaped reentrant cavities. International Journal of Thermal Sciences, 50(3), 411-419.
  • [20] Xia, G., Chai, L., Wang, H., Zhou, M., & Cui, Z. (2011). Optimum thermal design of microchannel heat sink with triangular reentrant cavities. Applied Thermal Engineering, 31(6-7), 1208-1219.
  • [21] Chai, L. Xia,G.D. Wang,L. Zhou, M.Z and Cui, Z.Z., Heat transfer enhancement in microchannel heat sinks with periodic expansion–constriction cross-sections, Int. J. Heat Mass Trans., 2013 62,741–751.
  • [22] Gururatana, S. (2012). Numerical simulation of micro-channel heat sink with dimpled surfaces. American Journal of Applied Sciences, 9(3), 399.
  • [23] Dehghan, M., Daneshipour, M., Valipour, M. S., Rafee, R., & Saedodin, S. (2015). Enhancing heat transfer in microchannel heat sinks using converging flow passages. Energy Conversion and Management, 92, 244-250.
  • [24]Patankar, S.V., (1980). Numerical Heat Transfer and Fluid Flow. 1st Edn, Hemisphere Publication Corporation, Washington: ISBN: 0070487405.
  • [25] Grigull, U., & Tratz, H. (1965). Thermischer einlauf in ausgebildeter laminarer rohrströmung. International Journal of Heat and Mass Transfer, 8(5), 669-678.