EFFECTS OF HEATER DIMENSIONS ON NANOFLUID NATURAL CONVECTION IN A HEATED INCINERATOR SHAPED CAVITY CONTAINING A HEATED BLOCK

The present work reports a numerical study of natural convection in an incinerator shaped enclosure with a localized heated source situated at the bottom. Lattice Boltzmann Method (LBM) is used to simulate nanofluid (water-Al2O3) flow and heat transfer. Simulations have been carried out for the pertinent parameters: Rayleigh number (Ra=103−106), solid volume fraction    relative heat source high ( ), relative heat source width ( ), and inclination angle of the incinerator ( ). The comparison of the obtained results is in excellent agreement with results from literature. It may be noted that the Rayleigh number, the solid volume fraction, the heat source tallness enhances the heat transfer and influences the flow pattern and the thermal structures. However for the relative heat source width plays opposite role for values superior to 0.4.

___

  • [1] Khaled, A. R. A., Siddique, M., Abdulhafiz, N. I., & Boukhary, A. Y. (2010). Recent advances in heat transfer enhancements: A review report. International Journal of Chemical Engineering.
  • [2] Bergles, A. E., (1998). Handbook of Heat Transfer, McGraw-Hill, New York, NY, USA, 3rd edition.
  • [3] Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP--84938; CONF-951135--29). Argonne National Lab., IL (United States).
  • [4] Mahbubul, I. M., Saidur, R., & Amalina, M. A. (2012). Latest developments on the viscosity of nanofluids. International Journal of Heat and Mass Transfer, 55(4), 874-885.
  • [5] Shanbedi, M., Amiri, A., Heris, S. Z., & Kazi, S. N. (2015). Basic Principles and Modern Aspects.
  • [6] Cheikh, N. B., Chamkha, A. J., & Beya, B. B. (2009). Effect of inclination on heat transfer and fluid flow in a finned enclosure filled with a dielectric liquid. Numerical Heat Transfer, Part A: Applications, 56(3), 286-300.
  • [7] Abbassi, M. A., Mliki, B., & Djebali, R. (2017). Lattice Boltzmann Method for Simulation of Nanoparticle Brownian Motion and Magnetic Field Effects on Free Convection in A Nanofluid-filled Open Cavity with Heat Generation/Absorption and Non Uniform Heating on the Left Solid Vertical Wall.
  • [8] Oztop, H. F., Selimefendigil, F., Abu-Nada, E., & Al-Salem, K. (2016). Recent developments of computational methods on natural convection in curvilinear shaped enclosures. Journal of Thermal Engineering, 2(2),693-698.
  • [9] Moumni, H., Welhezi, H., Djebali, R., & Sediki, E. (2015). Accurate finite volume investigation of nanofluid mixed convection in two-sided lid driven cavity including discrete heat sources. Applied Mathematical Modelling, 39(14),4164-4179.
  • [10] Mahfoud, B., & Bendjaghlouli, A. (2018). Natural Convection of a Nanofluid in a Conical Container. Journal of Thermal Engineering, 4(1), 1713-1723.
  • [11] Hassan, H. (2014). Heat transfer of Cu–water nanofluid in an enclosure with a heat sink and discrete heat source. European Journal of Mechanics-B/Fluids, 45, 72-83.
  • [12] Öztop, H. F., Estellé, P., Yan, W. M., Al-Salem, K., Orfi, J., & Mahian, O. (2015). A brief review of natural convection in enclosures under localized heating with and without nanofluids. International Communications in Heat and Mass Transfer, 60, 37-44.
  • [13] Kaluri, R. S., Basak, T., & Roy, S. (2010). Heatline approach for visualization of heat flow and efficient thermal mixing with discrete heat sources. International Journal of Heat and Mass Transfer, 53(15-16), 3241-3261.
  • [14] Aminossadati, S. M., & Ghasemi, B. (2009). Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure. European Journal of Mechanics-B/Fluids, 28(5), 630-640.
  • [15] Mussa, M. A., Abdullah, S., Azwadi, C. N., & Muhamad, N. (2011). Simulation of natural convection heat transfer in an enclosure by the lattice-Boltzmann method. Computers & Fluids, 44(1), 162-168.
  • [16] Paroncini, M., & Corvaro, F. (2009). Natural convection in a square enclosure with a hot source. International journal of thermal sciences, 48(9), 1683-1695.
  • [17] Chen, S., & Doolen, G. D. (1998). Lattice Boltzmann method for fluid flows. Annual review of fluid mechanics, 30(1),329-364.
  • [18] Djebali, R., El Ganaoui, M., & Pateyron, B. (2012). A lattice Boltzmann-based investigation of powder in-flight characteristics during APS process, part I: modelling and validation. Progress in Computational Fluid Dynamics, an International Journal, 12(4), 270-278.
  • [19] Dixit, H. N., & Babu, V. (2006). Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. International journal of heat and mass transfer, 49(3-4), 727-739.
  • [20] Patankar, S. (1980). Numerical heat transfer and fluid flow. CRC press.
  • [21] McNamara, G. R., & Zanetti, G. (1988). Use of the Boltzmann equation to simulate lattice-gas automata. Physical review letters, 61(20), 2332.
  • [22] Lai, F. H., & Yang, Y. T. (2011). Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure. International Journal of Thermal Sciences, 50(10), 1930-1941.