AN OVERVIEW OF RECENT PROGRESS IN CONDENSATION HEAT TRANSFER ENHANCEMENT ACROSS HORIZONTAL TUBES AND THE TUBE BUNDLE

The present paper presents a review of condensation heat transfer across smooth and enhanced horizontal surfaces due to its significance in refrigeration, air conditioning and heat pump applications. The emphasizes is on the recent understanding of experimental as well as the semi-empirical correlations to investigate the heat transfer phenomena during condensation associated with enhanced geometries. An effort has been made to submit free-convection condensation effects outside of single tubes and the tube bundle with the influence of tube geometries, condensate retention and gravity on film condensation; however, comparison of forced convection is also presented. Alternative of conventional refrigerants in condensation process by low-global warming potential (GWP) refrigerants is addressed as well due to increase in atmospheric burden affected by hydro-fluoro-carbons (HFCs). Although many researchers have reviewed the condensation impact across enhanced surfaces, a few of them revised its behavior across pin-fin tubes. The effects of geometry, surface wettability, and operating conditions on the location, amount and form of condensate film are discussed. Various theoretical models prediction with the new experimental data across pin-fin tubes is also revealed. This review is distributed into two main sections: the first section focuses on condensation across enhanced tubes, sub dividing the study into integral-fin and pin-fin tubes based on theoretical and experimental investigations. It covers the geometrical effects concerning three dimensional (3D) surfaces, fin density, fin spacing and fin thickness. The later part of the paper concentrates on condensation behavior across the tube bundle incorporating the effects of fin density and refrigerant mixtures highlighting both theoretical and experimental knowledge. Recent research shows an agreement between theoretical and experimental models in the defined area; though, a considerable amount of work on semi-empirical correlation formulation is visible in the literature. The strength of this paper is the latest findings on condensation against different geometrical parameters of extended surfaces specifically across pin- fin tubes and the tube bundle. Finally, theoretical enhancement factors along with many heat transfer correlations are presented and recommendations are suggested for the future work.

___

  • [1] Siddique, M., et al., Recent advances in heat transfer enhancements: a review report. International Journal of Chemical Engineering, 2010. 2010.doi.org/10.1155/2010/106461.
  • [2] Qin, P., et al. Experimental investigation on condensation heat transfer of R134a on single horizontal copper and stainless steel three-dimensional finned tubes. in 7TH INTERNATIONAL SYMPOSIUM ON MULTIPHASE FLOW, HEAT MASS TRANSFER AND ENERGY CONVERSION. 2013. AIP Publishing. 1547, 513 (2013). doi.org/10.1063/1.4816903.
  • [3] Dalkilic, A. and S. Wongwises, Intensive literature review of condensation inside smooth and enhanced tubes. International Journal of Heat and Mass Transfer, 2009. 52(15): p. 3409-3426. doi.org/10.1016/j.ijheatmasstransfer.2009.01.011.
  • [4] Manglik, R., Heat transfer enhancement. 2003, Wiley, New York. p. 1029-1130.
  • [5] Naphon, P. and S. Wongwises, A review of flow and heat transfer characteristics in curved tubes. Renewable and Sustainable Energy Reviews, 2006. 10(5): p. 463-490.doi.org/10.1016/j.rser.2004.09.014.
  • [6] Gawai, U., et al., Experimental Investigation of Heat transfer by PIN FIN. Int J Eng Innovative Technol, 2013. 2(7): p. 202-204.
  • [7] Sheikholeslami, M., M. Gorji-Bandpy, and D.D. Ganji, Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Renewable and Sustainable Energy Reviews, 2015. 49: p. 444-469.doi.org/10.1016/j.rser.2015.04.113.
  • [8] Kareem, Z.S., et al., Passive heat transfer enhancement review in corrugation. Experimental Thermal and Fluid Science, 2015. 68: p. 22-38.doi.org/10.1016/j.expthermflusci.2015.04.012.
  • [9] Liu, S. and M. Sakr, A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renewable and Sustainable Energy Reviews, 2013. 19: p. 64-81.doi.org/10.1016/j.rser.2012.11.021.
  • [10] Léal, L., et al., An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials. International Journal of Heat and Mass Transfer, 2013. 61: p. 505-524. doi.org/10.1016/j.ijheatmasstransfer.2013.01.083.
  • [11] Thulukkanam, K., Heat exchanger design handbook. 2013: CRC Press.
  • [12] Jung, D., et al., Condensation heat transfer coefficients of enhanced tubes with alternative refrigerants for CFC11 and CFC12. International Journal of Refrigeration, 1999. 22(7): p. 548-557. doi.org/10.1016/S0140-7007(99)00020-1.
  • [13] Rose, J., Surface tension effects and enhancement of condensation heat transfer. Chemical Engineering Research and Design, 2004. 82(4): p. 419-429. doi.org/10.1205/026387604323050128.
  • [14] Cavallini, A., et al., Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes. International Journal of Refrigeration, 2000. 23(1): p. 4-25. doi.org/10.1016/S0140-7007(99)00032-8.
  • [15] Rose, J., An approximate equation for the vapour-side heat-transfer coefficient for condensation on low-finned tubes. International journal of heat and mass transfer, 1994. 37(5): p. 865-875. doi.org/10.1016/0017-9310(94)90122-8.
  • [16] Al-Jamal, K. and H. Khashashneh, Experimental investigation in heat transfer of triangular and pin fin arrays. Heat and Mass Transfer, 1998. 34(2-3): p. 159-162. doi.org/10.1007/s002310050244.
  • [17] Kundu, B. and P. Das, Performance analysis and optimization of elliptic fins circumscribing a circular tube. International Journal of Heat and Mass Transfer, 2007. 50(1): p. 173-180. doi.org/10.1016/j.ijheatmasstransfer.2006.06.043.
  • [18] Kundu, B., Performance and optimization analysis of SRC profile fins subject to simultaneous heat and mass transfer. International journal of heat and mass transfer, 2007. 50(7): p. 1545-1558. doi.org/10.1016/j.ijheatmasstransfer.2006.08.029.
  • [19] Kundu, B., Performance and optimum design analysis of longitudinal and pin fins with simultaneous heat and mass transfer: unified and comparative investigations. Applied Thermal Engineering, 2007. 27(5): p. 976-987. doi.org/10.1016/j.applthermaleng.2006.08.003.
  • [20] Sahiti, N., Thermal and fluid dynamic performance of pin fin heat transfer surfaces. 2006, Ph. D. dissertation, Erlangen-Nürnberg, Germany.
  • [21] Rose, J.W., Some aspects of condensation heat transfer theory. International Communications in Heat and Mass Transfer, 1988. 15(4): p. 449-473. doi.org/10.1016/0735-1933(88)90043-7.
  • [22] Masuda, H., Film condensation heat transfer of low integral-fin tube. 1985.
  • [23] Ali, H.M. and A. Briggs, Condensation heat transfer on pin-fin tubes: effect of thermal conductivity and pin height. Applied Thermal Engineering, 2013. 60(1-2): p. 465-471. doi.org/10.1016/j.applthermaleng.2012.08.020.
  • [24] Al-Dadah, R. and T. Karayiannis, Passive enhancement of condensation heat transfer. Applied thermal engineering, 1998. 18(9): p. 895-909. doi.org/10.1016/S1359-4311(97)00111-7.
  • [25] Sharqawy, M.H. and S.M. Zubair, Efficiency and optimization of straight fins with combined heat and mass transfer–an analytical solution. Applied Thermal Engineering, 2008. 28(17): p. 2279-2288. doi.org/10.1016/j.applthermaleng.2008.01.003.
  • [26] Kundu, B., D. Barman, and S. Debnath, An analytical approach for predicting fin performance of triangular fins subject to simultaneous heat and mass transfer. International journal of refrigeration, 2008. 31(6): p. 1113-1120.doi.org/10.1016/j.ijrefrig.2008.01.007.
  • [27] Briggs, A., Enhanced condensation of R-113 and steam using three-dimensional pin-fin tubes. Experimental heat transfer, 2003. 16(1): p. 61-79. doi.org/10.1080/08916150390126469.
  • [28] Zhang, Z., et al., Condensation heat transfer characteristics of zeotropic refrigerant mixture R407C on single, three-row petal-shaped finned tubes and helically baffled condenser. Applied Thermal Engineering, 2012. 39: p. 63-69. doi.org/10.1016/j.applthermaleng.2012.01.021
  • [29] Belghazi, M., A. Bontemps, and C. Marvillet, Condensation heat transfer on enhanced surface tubes: experimental results and predictive theory. Journal of heat transfer, 2002. 124(4): p. 754-761. doi.org/10.1115/1.1459728.
  • [30] Rathod Pravin, P., R. Kumar, and A. Gupta, ENHANCEMENT OF CONDENSATION HEAT TRANSFER OVER HORIZONTAL INTEGRAL-FIN TUBES-A REVIEW STUDY. Journal of Engineering Research and Studies E-ISSN. 976: p. 7916.
  • [31] Nusselt, W., Die Oberflachenkondesation des Wasserdamffes the surface condensation of water. Zetrschr. Ver. Deutch. Ing., 1916. 60: p. 541-546.
  • [32] Adamek, T. and R.L. Webb, Prediction of film condensation on horizontal integral fin tubes. International journal of heat and mass transfer, 1990. 33(8): p. 1721-1735. doi.org/10.1016/0017-9310(90)90027-R.
  • [33] Briggs, A. and J.W. Rose, Effect of fin efficiency on a model for condensation heat transfer on a horizontal, integral-fin tube. International Journal of Heat and Mass Transfer, 1994. 37: p. 457-463. doi.org/10.1016/0017-9310(94)90045-0.
  • [34] Ji, W.-T., et al., Nucleate pool boiling and filmwise condensation heat transfer of R134a on the same horizontal tubes. International Journal of Heat and Mass Transfer, 2015. 86: p. 744-754. doi.org/10.1016/j.ijheatmasstransfer.2015.02.020.
  • [35] Kumar, R., et al., Augmentation of outside tube heat transfer coefficient during condensation of steam over horizontal copper tubes. International communications in heat and mass transfer, 1998. 25(1): p. 81-91. doi.org/10.1016/S0735-1933(97)00139-5.
  • [36] Kumar, R., et al., Augmentation of heat transfer during filmwise condensation of steam and R-134a over single horizontal finned tubes. International journal of heat and mass transfer, 2002. 45(1): p. 201-211. doi.org/10.1016/S0017-9310(01)00128-4.
  • [37] Kumar, R., et al., Prediction of heat transfer coefficient during condensation of water and R-134a on single horizontal integral-fin tubes. International journal of refrigeration, 2002. 25(1): p. 111-126. doi.org/10.1016/S0140-7007(00)00094-3.
  • [38] Jung, D., et al., Condensation heat transfer coefficients of R22, R407C, and R410A on a horizontal plain, low fin, and turbo-C tubes. International journal of refrigeration, 2003. 26(4): p. 485-491. doi.org/10.1016/S0140-7007(02)00161-5.
  • [39] Jung, D., et al., Condensation heat transfer coefficients of binary HFC mixtures on low fin and Turbo-C tubes. International Journal of Refrigeration, 2005. 28(2): p. 212-217. doi.org/10.1016/j.ijrefrig.2004.07.023.
  • [40] Wang, F.X., et al., Experimental investigation on condensation heat transfer of R410A on single horizontal petal-shaped finned tube. Journal of Enhanced Heat Transfer, 2012. 19(6). doi. 10.1615/JEnhHeatTransf.2012006002.
  • [41] Kang, Y.T., H. Hong, and Y.S. Lee, Experimental correlation of falling film condensation on enhanced tubes with HFC134a; low-fin and Turbo-C tubes. International journal of refrigeration, 2007. 30(5): p. 805-811. doi.org/10.1016/j.ijrefrig.2006.12.003.
  • [42] Ali, H.-M., Free-convection condensation on single horizontal pin-fin tubes. 2011, Queen Mary, University of London.
  • [43] Yau, K.K., J.R. Cooper, and J.W. Rose, Effect of Fin Spacing on the Performance of Horizontal Integral-Fin Condenser Tubes. Journal of Heat Transfer, 1985. 107(2): p. 377-383.doi.org/10.1115/1.3247425.
  • [44] Briggs, A., X.L. Wen, and J.W. Rose, Accurate Heat Transfer Measurements for Condensation on Horizontal, Integral-Fin Tubes. Journal of Heat Transfer, 1992. 114(3): p. 719-726. doi.org/10.1115/1.2911340.
  • [45] Ali, H.M. and A. Ali, Measurements and semi-empirical correlation for condensate retention on horizontal integral-fin tubes: Effect of vapour velocity. Applied Thermal Engineering, 2014. 71(1): p. 24-33. doi.org/10.1016/j.applthermaleng.2014.06.037.
  • [46] Briggs, A. Liquid retention on three-dimensional pin-fin tubes, 2nd Int. Exergy. in Energy and Environment Symp., Kos, Paper No IEEES2–171. 2005.
  • [47] Al-Badri, A.R., et al., The influence of fin structure and fin density on the condensation heat transfer of R134a on single finned tubes and in tube bundles. International Journal of Heat and Mass Transfer, 2016. 100: p. 582-589.doi.org/10.1016/j.ijheatmasstransfer.2016.04.087.
  • [48] Hamed, O.A. and H.A. Al-Otaibi, Enhanced film condensation of steam on a horizontal finned tube. Desalination and Water Treatment, 2012. 50(1-3): p. 14-21. doi.org/10.1080/19443994.2012.708236.
  • [49] Cheng, W.Y., et al., Film condensation of HCFC-22 on horizontal enhanced tubes. International Communications in Heat and Mass Transfer, 1996. 23(1): p. 79-90. doi.org/10.1016/0735-1933(95)00086-0.
  • [50] Yun, R., J. Heo, and Y. Kim, Film condensation heat transfer characteristics of R134a on horizontal stainless steel integral-fin tubes at low heat transfer rate. international journal of refrigeration, 2009. 32(5): p. 865-873. doi.org/10.1016/j.ijrefrig.2008.12.001.
  • [51] Kumar, R., A. Gupta, and S. Vishvakarma, Condensation of R-134a vapour over single horizontal integral-fin tubes: effect of fin height. International Journal of Refrigeration, 2005. 28(3): p. 428-435. doi.org/10.1016/j.ijrefrig.2004.04.007.
  • [52] Zhao, C.-Y., et al., The influence of surface structure and thermal conductivity of the tube on the condensation heat transfer of R134a and R404A over single horizontal enhanced tubes. Applied Thermal Engineering, 2017. 125: p. 1114-1122.doi.org/10.1016/j.applthermaleng.2017.06.133.
  • [53] Fernández-Seara, J., et al., Condensation of R-134a on horizontal integral-fin titanium tubes. Applied Thermal Engineering, 2010. 30(4): p. 295-301. doi.org/10.1016/j.applthermaleng.2009.09.007.
  • [54] Fernández-Seara, J., F.J. Uhía, and R. Diz, Experimental analysis of ammonia condensation on smooth and integral-fin titanium tubes. International Journal of Refrigeration, 2009. 32(6): p. 1140-1148. doi.org/10.1016/j.ijrefrig.2009.01.026.
  • [55] Chen, T. and D. Wu, Enhancement in heat transfer during condensation of an HFO refrigerant on a horizontal tube with 3D fins. International Journal of Thermal Sciences, 2018. 124: p. 318-326. doi.org/10.1016/j.ijthermalsci.2017.10.022.
  • [56] Nagata, R., C. Kondou, and S. Koyama, Comparative assessment of condensation and pool boiling heat transfer on horizontal plain single tubes for R1234ze (E), R1234ze (Z), and R1233zd (E). International Journal of Refrigeration, 2016. 63: p. 157-170. doi.org/10.1016/j.ijrefrig.2015.11.002.
  • [57] Cavallini, A., C. Zilio, and J. Brown, Sustainability with prospective refrigerants. International Journal of Energy Research, 2014. 38(3): p. 285-298. doi.org/10.1002/er.3035.
  • [58] Brown, J.S., C. Zilio, and A. Cavallini, Thermodynamic properties of eight fluorinated olefins. International Journal of Refrigeration, 2010. 33(2): p. 235-241. doi.org/10.1016/j.ijrefrig.2009.04.005.
  • [59] Marto, P., Film condensation heat transfer measurements on horizontal tubes: problems and progress. Experimental thermal and fluid science, 1992. 5(4): p. 556-569. doi.org/10.1016/0894-1777(92)90042-4.
  • [60] Wilson, E.E., A basis for rational design of heat transfer apparatus. Trans. ASME, 1915. 37(47): p. 47-82.
  • [61] Shah, R., Assessment of modified Wilson plot techniques for obtaining heat exchanger design data. Heat Transfer, 1990. 5: p. 51-56..doi.org/10.1615/IHTC9.1050.
  • [62] Rose, J.W., Heat-transfer coefficients, Wilson plots and accuracy of thermal measurements. Experimental Thermal and Fluid Science, 2004. 28(2–3): p. 77-86. doi.org/10.1016/S0894-1777(03)00025-6.
  • [63] Goldstein, R.J., et al., Heat transfer—A review of 2004 literature. International Journal of Heat and Mass Transfer, 2010. 53(21–22): p. 4343-4396. doi.org/10.1016/j.ijheatmasstransfer.2010.05.004.
  • [64] Browne, M. and P. Bansal, An overview of condensation heat transfer on horizontal tube bundles. Applied Thermal Engineering, 1999. 19(6): p. 565-594. doi.org/10.1016/S1359-4311(98)00055-6.
  • [65] Gregorig, R., An Analysis of Film Condensation on Wavy Surfaces Including Surface Tension Effects. Angew. Math. Phys, 1954. 5: p. 36-49.
  • [66] Butrymowicz, D., M. Trela, and J. Karwacki, Enhancement of condensation heat transfer by means of passive and active condensate drainage techniques. International journal of refrigeration, 2003. 26(4): p. 473-484. doi.org/10.1016/S0140-7007(02)00160-3.
  • [67] Fitzgerald, C.L., Forced-convection condensation heat-transfer on horizontal integral-fin tubes including effects of liquid retention. 2011, School of Engineering and Material Science Queen Mary, University of London.
  • [68] Trela, M. and D. Butrymowicz, Enhancement of condensate drainage from a horizontal integral-fin tube by means of a solid strip. International journal of heat and mass transfer, 1999. 42(18): p. 3447-3459. doi.org/10.1016/S0017-9310(99)00034-4.
  • [69] Honda, H. and S. Nozu, A Prediction Method for Heat Transfer During Film Condensation on Horizontal Low Integral-Fin Tubes. Journal of Heat Transfer, 1987. 109(1): p. 218-225. doi.org/10.1115/1.3248046.
  • [70] Honda, H., S. Nozu, and K. Mitsumori. Augmentation of condensation on horizontal finned tubes by attaching a porous drainage plate. in Proc. ASME-JSME Thermal Engineering Joint Conference. 1983.
  • [71] Lunardini, V.J. and A. Aziz, Effect of Condensation on Performance and Design of Extended Surfaces. 1995, DTIC Document.
  • [72] Webb, R.L., Enhancement of film condensation. International Communications in Heat and Mass Transfer, 1988. 15(4): p. 475-507. doi.org/10.1016/0735-1933(88)90044-9.
  • [73] Al-Badri, A.R., et al., Element by element prediction model of condensation heat transfer on a horizontal integral finned tube. International Journal of Heat and Mass Transfer, 2013. 62: p. 463-472. doi.org/10.1016/j.ijheatmasstransfer.2013.03.015.
  • [74] Gebauer, T., et al., Condensation heat transfer on single horizontal smooth and finned tubes and tube bundles for R134a and propane. International Journal of Heat and Mass Transfer, 2013. 56(1-2): p. 516-524. doi.org/10.1016/j.ijheatmasstransfer.2012.09.049.
  • [75] Shigeki, H., et al., Effect of surface tension on condensate motion in laminar film condensation (study of liquid film in a small trough). International Journal of Heat and Mass Transfer, 1980. 23(11): p. 1471-1478. doi.org/10.1016/0017-9310(80)90151-9.
  • [76] Namasivayam, S. and A. Briggs, Effect of vapour velocity on condensation of atmospheric pressure steam on integral-fin tubes. Applied thermal engineering, 2004. 24(8-9): p. 1353-1364. doi.org/10.1016/j.applthermaleng.2003.12.020.
  • [77] Min, J. and R.L. Webb, Condensate formation and drainage on typical fin materials. Experimental Thermal and Fluid Science, 2001. 25(3): p. 101-111.doi.org/10.1016/S0894-1777(01)00062-0.
  • [78] Ali, H.M., et al., Effect of Condensate Flow Rate on Retention Angle on Horizontal Low-Finned Tubes. 2016. doi.org/10.2298/TSCI151128211A.
  • [79] Stegou-Sagia, A., Properties of new refrigerants and predictions for condensation heat transfer enhancement with low-finned tubes. Energy, 1996. 21(12): p. 1189-1199. doi.org/10.1016/0360-5442(96)00069-2.
  • [80] Masuda, H. and J. Rose. Static configuration of liquid films on horizontal tubes with low radial fins: implications for condensation heat transfer. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1987. The Royal Society. doi.org/10.1098/rspa.1987.0031.
  • [81] Namasivayam, S. and A. Briggs, Condensation of ethylene glycol on integral-fin tubes: effect of fin geometry and vapor velocity. Journal of heat transfer, 2005. 127(11): p. 1197-1206. doi.org/10.1115/1.2039112.
  • [82] Goldstein, R.J., et al., Heat transfer—A review of 2005 literature. International Journal of Heat and Mass Transfer, 2010. 53(21–22): p. 4397-4447. doi.org/10.1016/j.ijheatmasstransfer.2010.05.004.
  • [83] Fitzgerald, C.L., et al., Effect of vapour velocity on condensate retention between fins during condensation on low-finned tubes. International Journal of Heat and Mass Transfer, 2012. 55(4): p. 1412-1418. doi.org/10.1016/j.ijheatmasstransfer.2011.09.063.
  • [84] Glushchuk, A., et al., Experimental investigation of force balance at vapour condensation on a cylindrical fin. International Journal of Heat and Mass Transfer, 2017. 108: p. 2130-2142. doi.org/10.1016/j.ijheatmasstransfer.2017.01.067.
  • [85] Korte, C. and A.M. Jacobi, Condensate Retention Effects on the Performance of Plain-Fin-and-Tube Heat Exchangers: Retention Data and Modeling. Journal of Heat Transfer, 2001. 123(5): p. 926-936. doi.org/10.1115/1.1391276.
  • [86] Yau, K.K., J.R. Cooper, and J.W. Rose, Horizontal Plain and Low-Finned Condenser Tubes—Effect of Fin Spacing and Drainage Strips on Heat Transfer and Condensate Retention. Journal of Heat Transfer, 1986. 108(4): p. 946-950. doi.org/10.1115/1.3247039.
  • [87] Butrymowicz, D., M. Trela, and J. Karwacki, Enhancement of condensation heat transfer by means of EHD condensate drainage. International journal of thermal sciences, 2002. 41(7): p. 646-657. doi.org/10.1016/S1290-0729(02)01359-5.
  • [88] Niknejad, J. and J. Rose. Interphase matter transfer: an experimental study of condensation of mercury. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1981. The Royal Society.doi.org/10.1098/rspa.1981.0154.
  • [89] Rose, J.W., Condensation Heat Transfer Fundamentals. Chemical Engineering Research and Design, 1998. 76(2): p. 143-152.doi.org/10.1205/026387698524712.
  • [90] Wang, H. and J. Rose, Effect of interphase matter transfer on condensation on low-finned tubes––a theoretical investigation. International journal of heat and mass transfer, 2004. 47(1): p. 179-184. doi.org/10.1016/S0017-9310(03)00389-2.
  • [91] Sparrow, E.M. and S.H. Lin, Condensation Heat Transfer in the Presence of a Noncondensable Gas. Journal of Heat Transfer, 1964. 86(3): p. 430-436. doi.org/10.1115/1.3688714.
  • [92] Minkowycz, W.J. and E.M. Sparrow, Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion. International Journal of Heat and Mass Transfer, 1966. 9(10): p. 1125-1144.doi.org/10.1016/0017-9310(66)90035-4.
  • [93] Sparrow, E.M., W.J. Minkowycz, and M. Saddy, Forced convection condensation in the presence of noncondensables and interfacial resistance. International Journal of Heat and Mass Transfer, 1967. 10(12): p. 1829-1845.doi.org/10.1016/0017-9310(67)90053-1.
  • [94] Herranz, L.E., J.L. Muñoz-Cobo, and M.a.J. Palomo, Modeling condensation heat transfer on a horizontal finned tube in the presence of noncondensable gases. Nuclear Engineering and Design, 2000. 201(2–3): p. 273-288.doi.org/10.1016/S0029-5493(00)00278-8.
  • [95] Muñoz-Cobo, J.L., et al., Steam condensation on finned tubes, in the presence of non-condensable gases and aerosols: Influence of impaction, diffusiophoresis and settling on aerosol deposition. Nuclear Engineering and Design, 2005. 235(10–12): p. 1225-1237.doi.org/10.1016/j.nucengdes.2005.02.014.
  • [96] Al-Diwany, H.K. and J.W. Rose, Free convection film condensation of steam in the presence of non-condensing gases. International Journal of Heat and Mass Transfer, 1973. 16(7): p. 1359-1369. doi.org/10.1016/0017-9310(73)90144-0.
  • [97] Martin-Valdepenas, J., et al., Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code. Heat and mass transfer, 2005. 41(11): p. 961-976.doi.org/10.1007/s00231-004-0606-5.
  • [98] Wu, X., et al., Vapor free convection film condensation heat transfer in the presence of non-condensable gases with smaller molecular weights than the vapor. Applied Thermal Engineering, 2018. 130: p. 1611-1618.doi.org/10.1016/j.applthermaleng.2017.11.109.
  • [99] Hu, H., G. Tang, and D. Niu, Experimental investigation of condensation heat transfer on hybrid wettability finned tube with large amount of noncondensable gas. International Journal of Heat and Mass Transfer, 2015. 85: p. 513-523.doi.org/10.1016/j.ijheatmasstransfer.2015.02.006.
  • [100] Ali, H.M. and A. Briggs, Enhanced Condensation of Ethylene Glycol on Single Pin-Fin Tubes: Effect of Pin Geometry. Journal of Heat Transfer, 2012. 134(1): p. 011503.doi.org/10.1115/1.4004714.
  • [101] Baisar, M. and A. Briggs, Condensation of steam on pin-fin tubes: effect of circumferential pin thickness and spacing. Heat Transfer Engineering, 2009. 30(13): p. 1017-1023.doi.org/10.1080/01457630902921014.
  • [102] Ali, H. and A. Briggs, Condensation of ethylene glycol on pin-fin tubes: Effect of circumferential pin spacing and thickness. Applied Thermal Engineering, 2012. 49: p. 9-13. doi.org/10.1016/j.applthermaleng.2011.08.017.
  • [103] Ali, H.M., Condensation Heat Transfer on Geometrically Enhanced Horizontal Tube: A Review, in Heat Exchangers-Advanced Features and Applications. 2017, InTech.doi.org/10.5772/65896.
  • [104] Ali, H.M. and A. Briggs, Condensation of R-113 on pin-fin tubes: effect of circumferential pin thickness and spacing. Heat Transfer Engineering, 2012. 33(3): p. 205-212. doi.org/10.1080/01457632.2011.548296.
  • [105] Kundu, B., Approximate analytical method for prediction of performance and optimum dimensions of pin fins subject to condensation of quiescent vapor. International Journal of Refrigeration, 2009. 32(7): p. 1657-1671. doi.org/10.1016/j.ijrefrig.2009.04.006.
  • [106] Ali, H.M., H. Ali, and A. Briggs. Enhanced condensation of ethylene glycol on three-dimensional pin-fin tubes. in 2010 14th International Heat Transfer Conference. 2010. American Society of Mechanical Engineers.doi.org/10.1115/IHTC14-22110.
  • [107] Ali, H.M. and A. Briggs, A semi-empirical model for free-convection condensation on horizontal pin–fin tubes. International Journal of Heat and Mass Transfer, 2015. 81: p. 157-166. doi.org/10.1016/j.ijheatmasstransfer.2014.10.008
  • [108] Kundu, B. and G. Ghosh, An approximate analytical prediction about thermal performance and optimum design of pin fins subject to condensation of saturated steam flowing under forced convection. international journal of refrigeration, 2009. 32(5): p. 809-825. doi.org/10.1016/j.ijrefrig.2008.12.006.
  • [109] Ali, H.M. and A. Briggs, An investigation of condensate retention on pin-fin tubes. Applied Thermal Engineering, 2014. 63(2): p. 503-510.doi.org/10.1016/j.applthermaleng.2013.11.038.
  • [110] Ali, H.M., An analytical model for prediction of condensate flooding on horizontal pin-fin tubes. International Journal of Heat and Mass Transfer, 2017. 106: p. 1120-1124. doi.org/10.1016/j.ijheatmasstransfer.2016.10.088.
  • [111] Ali, H.M. and M. Abubaker, Effect of vapour velocity on condensate retention on horizontal pin-fin tubes. Energy Conversion and Management, 2014. 86: p. 1001- 1009.doi.org/10.1016/j.enconman.2014.06.064.
  • [112] Wu, X., et al., Approximate equations for film condensation in the presence of non-condensable gases. International Communications in Heat and Mass Transfer, 2017. 85: p. 124-130. doi.org/10.1016/j.icheatmasstransfer.2017.05.007.
  • [113] Ji, W.-T., et al., Influence of condensate inundation on heat transfer of R134a condensing on three dimensional enhanced tubes and integral-fin tubes with high fin density. Applied Thermal Engineering, 2012. 38: p. 151-159. doi.org/10.1016/j.applthermaleng.2012.01.029.
  • [114] Gabrielii, C. and L. Vamling, Replacement of R22 in tube-and-shell condensers: experiments and simulations. International journal of refrigeration, 1997. 20(3): p. 165-178. doi.org/10.1016/S0140-7007(96)00077-1.
  • [115] Murase, T., H.S. Wang, and J.W. Rose, Effect of inundation for condensation of steam on smooth and enhanced condenser tubes. International Journal of Heat and Mass Transfer, 2006. 49(17–18): p. 3180-3189. doi.org/10.1016/j.ijheatmasstransfer.2006.02.003.
  • [116] Cavallini, A., et al., Condensation inside and outside smooth and enhanced tubes—a review of recent research. International Journal of Refrigeration, 2003. 26(4): p. 373-392. doi.org/10.1016/S0140-7007(02)00150-0.
  • [117] Honda, H., et al., Film Condensation of R-113 on In-Line Bundles of Horizontal Finned Tubes. Journal of Heat Transfer, 1991. 113(2): p. 479-486. doi.org/10.1115/1.2910586.
  • [118] Karkhu, V. and V. Borovkov, Film condensation of vapor at finely-finned horizontal tubes. Heat Transfer-Soviet Research, 1971. 3(2): p. 183-191.
  • [119] Cheng, W. and C. Wang, Condensation of R-134a on enhanced tubes. 1994, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (United States).
  • [120] Gstoehl, D. and J. Thome, Film Condensation of R-134a on Tube Arrays With Plain and Enhanced Surfaces: Part II—Empirical Prediction of Inundation Effects. Journal of Heat Transfer, 2006. 128(1): p. 33-43. doi.org/10.1115/1.2130401.
  • [121] Randall, D.L. and S.J. Eckels, Effect of Inundation Upon the Condensation Heat Transfer Performance of R-134a: Part II—Results (RP-984). HVAC&R Research, 2005. 11(4): p. 543-562.
  • [122] Christians, M., M. Habert, and J.R. Thome, Film condensation of R-134a and R-236fa, part 1: experimental results and predictive correlation for single-row condensation on enhanced tubes. Heat Transfer Engineering, 2010. 31(10): p. 799-808.doi.org/10.1080/01457630903547461.
  • [123] Christians, M., M. Habert, and J.R. Thome, Film condensation of R-134a and R-236fa, part 2: experimental results and predictive correlation for bundle condensation on enhanced tubes. Heat Transfer Engineering, 2010. 31(10): p. 809-820.doi.org/10.1080/01457630903547487.
  • [124] Belghazi, M., et al., Condensation heat transfer of a pure fluid and binary mixture outside a bundle of smooth horizontal tubes. Comparison of experimental results and a classical model. International journal of refrigeration, 2001. 24(8): p. 841-855.doi.org/10.1016/S0140-7007(00)00037-2.
  • [125] Hu, H., et al., Heat transfer characteristics of mixed hydrocarbon refrigerant flow condensation in shell side of helically baffled shell-and-tube heat exchanger. Applied Thermal Engineering, 2018. 133: p. 785-796. doi.org/10.1016/j.applthermaleng.2018.01.083.
  • [126] Gstoehl, D. and J. Thome, Film condensation of R-134a on tube arrays with plain and enhanced surfaces: Part I—experimental heat transfer coefficients. Journal of Heat Transfer, 2006. 128(1): p. 21-32. doi.org/10.1115/1.2130400.
  • [127] Ng, B.C. and S. Namasivayam, Effect of Condensate Inundation on Enhanced Tubes.EURECA 2013.
  • [128] Randall, D.L. and S.J. Eckels, Effect of Inundation Upon the Condensation Heat Transfer Performance of R-134a: Part I—Facility Overview and Data Analysis (RP-984). HVAC&R Research, 2005. 11(4): p. 527-542.
  • [129] Huber, J.B., L.E. Rewerts, and M.B. Pate, Shell-side condensation heat transfer of R-134a. Part 1: Finned-tube performance. 1994, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (United States).
  • [130] Webb, R.L. and C. Murawski, Row effect for R-11 condensation on enhanced tubes. Journal of heat transfer, 1990. 112(3): p. 768-776.doi.org/10.1115/1.2910452.
  • [131] Belghazi, M., A. Bontemps, and C. Marvillet, Experimental study and modelling of heat transfer during condensation of pure fluid and binary mixture on a bundle of horizontal finned tubes. International journal of refrigeration, 2003. 26(2): p. 214-223. doi.org/10.1016/S0140-7007(02)00042-7.
  • [132] Karlsson, T. and L. Vamling, Flow fields in shell-and-tube condensers: comparison of a pure refrigerant and a binary mixture. International Journal of Refrigeration, 2005. 28(5): p. 706-713. doi.org/10.1016/j.ijrefrig.2004.12.008.
  • [133] Sajjan, D., T. Karlsson, and L. Vamling, Reasons for drop in shell-and-tube condenser performance when replacing R22 with zeotropic mixtures. Part 1. Analysis of experimental findings. International journal of refrigeration, 2004. 27(5): p. 552-560.doi.org/10.1016/j.ijrefrig.2004.03.013.
  • [134] Belghazi, M., A. Bontemps, and C. Marvillet, Filmwise condensation of a pure fluid and a binary mixture in a bundle of enhanced surface tubes. International journal of thermal sciences, 2002. 41(7): p. 631-638. doi.org/10.1016/S1290-0729(02)01357-1.
  • [135] Karlsson, T. and L. Vamling, Reasons for drop in shell-and-tube condenser performance when replacing R22 with zeotropic mixtures. Part 2: investigation of mass transfer resistance effects. International journal of refrigeration, 2004. 27(5): p. 561-566.doi.org/10.1016/j.ijrefrig.2004.03.012.
  • [136] Tanasawa, I., Advances in condensation heat transfer. Advances in heat transfer, 1991. 21: p. 55-139. doi.org/10.1016/S0065-2717(08)70334-4.
  • [137] Honda, H., H. Takamatsu, and N. Takata, Condensation of Downward-Flowing Zeotropic Mixture HCFC-123/HFC-134a on a Staggered Bundle of Horizontal Low-Finned Tubes. Journal of Heat Transfer, 1999. 121(2): p. 405-412. doi.org/10.1115/1.2825993.
  • [138] Briggs, A. and S. Sabaratnam, Condensation From Pure Steam and Steam–Air Mixtures on Integral-Fin Tubes in a Bank. Journal of heat transfer, 2005. 127(6): p. 571-580.doi.org/10.1115/1.1915371.
  • [139] Liu, G., et al., Experimental study on heat transfer characteristics of a condenser in the presence of air. Applied Thermal Engineering, 2017. 120: p. 170-178.doi.org/10.1016/j.applthermaleng.2017.03.139.
  • [140] Hu, H., G. Tang, and D. Niu, Experimental investigation of convective condensation heat transfer on tube bundles with different surface wettability at large amount of noncondensable gas. Applied Thermal Engineering, 2016. 100: p. 699-707.doi.org/10.1016/j.applthermaleng.2016.02.086.