REVIEW ENHANCEMENT OF THERMAL CONDUCTIVITY AND HEAT TRANSFER USING CARBON NANOTUBE FOR NANOFLUIDS AND IONANOFLUIDS

This paper attempts to present a clearer picture, a detailed and up to date review of the heat transfer enhancement and thermal conductivity improvement for conventional fluids by adding carbon nanotubes or hybrid carbon nanotubes in the base fluid to obtain nanofluids or ionanofluid. Carbon nanotubes have attracted the interest of different researchers because of their high thermal conductivity that exceeds other equivalent types of nanoparticles. In view of this, the effect of different key factors like concentration, temperature and shape type of nanoparticles on the thermal conductivity improvement in nanofluids were reviewed. Moreover, the effect of surfactant stabilizers on the carbon nanotubes nanofluids distribution was evaluated. The results that have been obtained from the valuable studies have been analyzed and some gaps have been found that need to be re-reviewed by the researchers

___

  • [1] Belhadj A, Bouchenafa R, Saim R. Numerical investigation of forced convection of nanofluid in microchannels heat sinks. J Therm Eng 2018. https://doi.org/10.18186/thermal.438480.
  • [2] Samira P, Saeed ZH, Motahare S, Mostafa K. Pressure drop and thermal performance of CuO/ethylene glycol (60%)-water (40%) nanofluid in car radiator. Korean J Chem Eng 2015; 32:609–16. https://doi.10.1007/s11814-014-0244-7
  • [3] Murshed SMS, Leong KC, Yang C, Nguyen NT. Convective heat transfer characteristics of aqueous TiO2 nanofluid under laminar flow conditions. Int J Nanosci 2008; 7:325–3https://doi.org/10.1142/S0219581X08005493.
  • [4] Ravisankar R, Venkatachalapathy VSK, Alagumurthi N. Application of nanotechnology to improve the performance of tractor radiator using Cu-water nanofluid. J Therm Eng 2018; 4:2188–200.https://doi.10.18186/journal-of-thermal-engineering.434036
  • [5] Usri NA, Azmi WH, Mamat R, Hamid KA, Najafi G. Thermal conductivity enhancement of Al2O3 nanofluid in ethylene glycol and water mixture. Energy Procedia 2015; 79:397–402. https://doi.10.1016/j.egypro.2015.11.509
  • [6] Halelfadl S, Maré T, Estellé P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp Therm Fluid Sci 2014; 53:104–10. https://doi.org/10.1016/j.expthermflusci.2013.11.010
  • [7] Ahmadi AR, Zahmatkesh A, Hatami M, Ganji DD. A comprehensive analysis of the flow and heat transfer for a nanofluid over an unsteady stretching flat plate. Powder Technol 2014; 258:125–33. https://doi.org/10.1016/j.powtec.2014.03.021
  • [8] Trisaksri V, Wongwises S. Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev 2007; 11:512–23. https://doi.org/10.1016/j.rser.2005.01.010
  • [9] Goharshadi EK, Ahmadzadeh H, Samiee S, Hadadian M. Nanofluids for heat transfer enhancement-a review 2013. https://doi.org/10.1080/01457630600904593
  • [10] Kleinstreuer, C., & Feng, Y. (2011). Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale research letters, 6(1), 229. https://doi.org/10.1186/1556-276X-6-229
  • [11] Lazarus G. Nanofluid heat transfer and applications. J Therm Eng 2015; 1:113–5. https://doi.10.18186/jte.93344
  • [12] Lee S, Choi S-S, Li and S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles 1999. https://doi.org/10.1115/1.2825978
  • [13] Deng F, Zheng Q-S, Wang L-F, Nan C-W. Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl Phys Lett 2007; 90:21914. https://doi.org/10.1063/1.2430914
  • [14] Lazarus G, Roy S, Kunhappan D, Cephas E, Wongwises S. Heat transfer performance of silver/water nanofluid in a solar flat-plate collector. J Therm Eng 2015; 1:104–12. https://doi.org/10.18186/jte.29475
  • [15] Barbés B, Páramo R, Blanco E, Pastoriza-Gallego MJ, Pineiro MM, Legido JL, et al. Thermal conductivity and specific heat capacity measurements of Al 2 O 3 nanofluids. J Therm Anal Calorim 2013; 111:1615–25. https://doi.org/10.1007/s10973-012-2534-9
  • [16] Estellé P, Halelfadl S, Maré T. Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview. J Therm Eng 2015; 1:381–90. https://doi.org/10.18186/jte.92293
  • [17] Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 2009; 48:363–71. https://doi.10.1016/j.ijthermalsci.2008.03.009
  • [18] Tokgöz N, Alıç E, Kaşka Ö, Aksot MM. The numerical study of heat transfer enhancement using AL2O3-water nanofluid in corrugated duct application 2018. https://doi.10.18186/journal-of-thermal-engineering.409655
  • [19] Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., IL (United States); 1995.
  • [20] Khairul MA, Shah K, Doroodchi E, Azizian R, Moghtaderi B. Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids. Int J Heat Mass Transf 2016; 98:778–87. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.079
  • [21] Hong KS, Hong T-K, Yang H-S. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 2006; 88:31901. https://doi.org/10.1063/1.2166199
  • [22] Hatami M, Nouri R, Ganji DD. Forced convection analysis for MHD Al2O3–water nanofluid flow over a horizontal plate. J Mol Liq 2013; 187:294–301. https://doi.org/10.1016/j.molliq.2013.08.008
  • [23] Timofeeva E V, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys 2009; 106:14304. https://doi.org/10.1063/1.3155999
  • [24] Goudarzi K, Nejati F, Shojaeizadeh E, Yousef-abad SKA. Experimental study on the effect of pH variation of nanofluids on the thermal efficiency of a solar collector with helical tube. Exp Therm Fluid Sci 2015; 60:20–7. https://doi.org/10.1016/j.expthermflusci.2014.07.015
  • [25] Eastman JA, Choi US, Li S, Thompson LJ, Lee S. Enhanced thermal conductivity through the development of nanofluids. MRS Online Proc Libr Arch 1996;457. https://doi.org/10.1557/PROC-457-3
  • [26] Series IOPC, Science M. Experimental investigation on the enhancement of heat transfer by using carbon nanotubes CNT taunit m series Experimental investigation on the enhancement of heat trans- fer by using carbon nanotubes CNT taunit m series 2020. https://doi.org/10.1088/1757-899X/791/1/012003.
  • [27] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett 2008; 8:902–7. https://doi.org/10.1021/nl0731872
  • [28] Ghadikolaei SS, Hosseinzadeh K, Hatami M, Ganji DD, Armin M. Investigation for squeezing flow of ethylene glycol (C2H6O2) carbon nanotubes (CNTs) in rotating stretching channel with nonlinear thermal radiation. J Mol Liq 2018; 263:10–21. https://doi.org/10.1016/j.molliq.2018.04.141
  • [29] Ghadikolaei SS, Hosseinzadeh K, Ganji DD. Numerical study on magnetohydrodynic CNTs-water nanofluids as a micropolar dusty fluid influenced by non-linear thermal radiation and joule heating effect. Powder Technol 2018; 340:389–99. https://doi.org/10.1016/j.powtec.2018.09.023
  • [30] Sobamowo MG, Yinusa AA. Thermo-fluidic parameters effects on nonlinear vibration of fluid-conveying nanotube resting on elastic foundations using homotopy perturbation method. J Therm Eng 2018; 4:2211–33. https://doi.10.18186/journal-of-thermal-engineering.434043
  • [31] Dresselhaus MS, Avouris P. Introduction to Carbon Materials Research. Carbon Nanotub n.d.:1–9. https://doi.org/10.1007/3-540-39947-X_1.
  • [32] Chu K, Guo H, Jia C, Yin F, Zhang X, Liang X, et al. Thermal properties of carbon nanotube-copper composites for thermal management applications. Nanoscale Res Lett 2010; 5:868–74. https://doi.org/10.1007/s11671-010-9577-2
  • [33] Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 2014; 9:393. https://doi.org/10.1186/1556-276X-9-393
  • [34] Pandey P, Dahiya M. Carbon nanotubes: Types, methods of preparation and applications. Carbon N Y 2016;1.
  • [35] Wen D, Ding Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Thermophys Heat Transf 2004; 18:481–5. https://doi.org/10.2514/1.9934
  • [36] Choi SUS, Zhang ZG, Yu Wl, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 2001; 79:2252–4. https://doi.org/10.1063/1.1408272
  • [37] Marquis FDS, Chibante LPF. Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes. Jom 2005; 57:32–43. https://doi.org/10.1007/s11837-005-0180-4
  • [38] Pop E, Mann D, Wang Q, Goodson K, Dai H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 2006; 6:96–100. https://doi.org/10.1021/nl052145f
  • [39] Kim P, Shi L, Majumdar A, McEuen PL. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 2001; 87:215502. https://doi.org/10.1103/PhysRevLett.87.215502
  • [40] Abdalla S, Al-Marzouki F, Al-Ghamdi AA, Abdel-Daiem A. Different technical applications of carbon nanotubes. Nanoscale Res Lett 2015; 10:1–10. https://doi.org/10.1186/s11671-015-1056-3
  • [41] Yinusa A, Sobamowo G. Analysis of Dynamic Behaviour of a Tensioned Carbon Nanotube in Thermal and Pressurized Environments. Karbala Int J Mod Sci 2019; 5:2. https://doi.10.33640/2405-609X.1015
  • [42] Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater 2011; 10:569–81. https://doi.org/10.1038/nmat3064
  • [43] Harris PJF, Harris PJF. Carbon nanotube science: synthesis, properties and applications. Cambridge university press; 2009. https://doi.org/10.1002/anie.201000314
  • [44] Kobayashi N, Izumi H, Morimoto Y. Review of toxicity studies of carbon nanotubes. J Occup Health 2017:17–89. https://doi.org/10.1539/joh.17-0089-RA
  • [45] Simate GS, Iyuke SE, Ndlovu S, Heydenrych M, Walubita LF. Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environ Int 2012; 39:38–49. https://doi.org/10.1016/j.envint.2011.09.006
  • [46] Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, et al. Chemical oxidation of multiwalled carbon nanotubes. Carbon N Y 2008; 46:833–40. https://doi.org/10.1016/j.carbon.2008.02.012
  • [47] Yu H, Jin Y, Peng F, Wang H, Yang J. Kinetically controlled side-wall functionalization of carbon nanotubes by nitric acid oxidation. J Phys Chem C 2008; 112:6758–63. https://doi.org/10.1021/jp711975a
  • [48] Nasiri A, Shariaty-Niasar M, Rashidi A, Amrollahi A, Khodafarin R. Effect of dispersion method on thermal conductivity and stability of nanofluid. Exp Therm Fluid Sci 2011; 35:717–23. https://doi.org/10.1016/j.expthermflusci.2011.01.006
  • [49] Lindsay L, Broido DA, Mingo N. Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit. Phys Rev B - Condens Matter Mater Phys 2010;82. https://doi.org/10.1103/PhysRevB.82.161402.
  • [50] Wang X, Jiang Q, Xu W, Cai W, Inoue Y, Zhu Y. Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/bismaleimide composites. Carbon N Y 2013; 53:145–52. https://doi.org/10.1016/j.carbon.2012.10.041
  • [51] Evgin T, Koca HD, Horny N, Turgut A, Tavman IH, Chirtoc M, et al. Effect of aspect ratio on thermal conductivity of high density polyethylene/multi-walled carbon nanotubes nanocomposites. Compos Part A Appl Sci Manuf 2016; 82:208–13. https://doi.org/10.1016/j.compositesa.2015.12.013
  • [52] Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 2004; 84:4316–8. https://doi.org/10.1063/1.1756684
  • [53] Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofluids. AIChE J 2003; 49:1038–43. https://doi.org/10.1002/aic.690490420
  • [54] Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanoparticle Res 2003; 5:167–71. https://doi.org/10.1023/A:1024438603801
  • [55] Keblinski P, Phillpot SR, Choi SUS, Eastman JA. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 2002; 45:855–63. https://doi.org/10.1016/S0017-9310(01)00175-2
  • [56] Dresselhaus MS, Dresselhaus G, Charlier J-C, Hernandez E. Electronic, thermal and mechanical properties of carbon nanotubes. Philos Trans R Soc London Ser a Math Phys Eng Sci 2004; 362:2065–98. https://doi.org/10.1098/rsta.2004.1430
  • [57] Han J-W, Kim B, Li J, Meyyappan M. Flexible, compressible, hydrophobic, floatable, and conductive carbon nanotube-polymer sponge. Appl Phys Lett 2013; 102:51903. https://doi.org/10.1063/1.4790437
  • [58] Esmaeilzadeh H, Su J, Charmchi M, Sun H. Effect of hydrophobicity on the water flow in carbon nanotube—A molecular dynamics study. Theor Appl Mech Lett 2018; 8:284–90. https://doi.org/10.1016/j.taml.2018.04.007
  • [59] Xie H, Lee H, Youn W, Choi M. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J Appl Phys 2003; 94:4967–71. https://doi.org/10.1063/1.1613374
  • [60] Manasrah AD, Laoui T, Zaidi SJ, Atieh MA. Effect of PEG functionalized carbon nanotubes on the enhancement of thermal and physical properties of nanofluids. Exp Therm Fluid Sci 2017; 84:231–41. https://doi.org/10.1016/j.expthermflusci.2017.02.018
  • [61] Esfe MH, Firouzi M, Afrand M. Experimental and theoretical investigation of thermal conductivity of ethylene glycol containing functionalized single walled carbon nanotubes. Phys E Low-Dimensional Syst Nanostructures 2018; 95:71–7. https://doi.org/10.1016/j.physe.2017.08.017
  • [62] Hussien AA, Yusop NM, Abdullah MZ, Moh’d A A-N, Khavarian M. Study on convective heat transfer and pressure drop of MWCNTs/water nanofluid in mini-tube. J Therm Anal Calorim 2019; 135:123–32. https://doi.org/10.1007/s10973-018-7234-7
  • [63] Jiang H, Zhang Q, Shi L. Effective thermal conductivity of carbon nanotube-based nanofluid. Journal of the Taiwan Institute of Chemical Engineers. 2015 Oct 1; 55:76-81. https://doi.org/10.1016/j.jtice.2015.03.037
  • [64] Jana S, Salehi-Khojin A, Zhong WH. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta 2007; 462:45–55. https://doi.org/10.1016/j.tca.2007.06.009.
  • [65] Amrollahi A, Rashidi AM, Emami Meibodi M, Kashefi K. Conduction heat transfer characteristics and dispersion behaviour of carbon nanofluids as a function of different parameters. J Exp Nanosci 2009; 4:347–63. https://doi.org/10.1080/17458080902929929.
  • [66] Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf 2009; 52:5090–101. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029
  • [67] Assael MJ, Metaxa IN, Arvanitidis J, Christofilos D, Lioutas C. Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys 2005; 26:647–64. https://doi.org/10.1007/s10765-005-5569-3.
  • [68] Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transfer 2003; 125:567–74. https://doi.org/10.1115/1.1571080.
  • [69] Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci 2009; 33:706–14. https://doi.org/10.1016/j.expthermflusci.2009.01.005.
  • [70] Amrollahi A, Hamidi AA, Rashidi AM. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology. 2008 Jun 17;19(31):315701. https://doi.10.1088/0957-4484/19/31/315701
  • [71] Sundar LS, Singh MK, Sousa AC. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. International Communications in Heat and Mass Transfer. 2014 Mar 1; 52:73-83. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012
  • [72] Xie H, Chen L. Adjustable thermal conductivity in carbon nanotube nanofluids. Physics Letters A. 2009 May 4;373(21):1861-4. https://doi.org/10.1016/j.physleta.2009.03.037
  • [73] Baby TT, Ramaprabhu S. Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid. Nanoscale 2011; 3:2208–14. https://doi.org/10.1039/c0nr01024c.
  • [74] Naddaf A, Zeinali Heris S. Experimental study on thermal conductivity and electrical conductivity of diesel oil-based nanofluids of graphene nanoplatelets and carbon nanotubes. Int Commun Heat Mass Transf 2018; 95:116–22. https://doi.org/10.1016/j.icheatmasstransfer.2018.05.004.
  • [75] Xing M, Yu J, Wang R. International Journal of Heat and Mass Transfer Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes. Int J Heat Mass Transf 2015; 88:609–16. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.005.
  • [76] Xing M, Yu J, Wang R. Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids. International Journal of Thermal Sciences. 2016 Jun 1; 104:404-11. https://doi.org/10.1016/j.ijthermalsci.2016.01.024
  • [77] Manasrah AD, Al-Mubaiyedh UA, Laui T, Ben-Mansour R, Al-Marri MJ, Almanassra IW, et al. Heat transfer enhancement of nanofluids using iron nanoparticles decorated carbon nanotubes. Appl Therm Eng 2016; 107:1008–18. https://doi.org/10.1016/j.applthermaleng.2016.07.026.
  • [78] Aravind SJ, Baskar P, Baby TT, Sabareesh RK, Das S, Ramaprabhu S. Investigation of structural stability, dispersion, viscosity, and conductive heat transfer properties of functionalized carbon nanotube based nanofluids. The Journal of Physical Chemistry C. 2011 Sep 1;115(34):16737-44. https://doi.org/10.1021/jp201672p
  • [79] Zubir MN, Badarudin A, Kazi SN, Huang NM, Misran M, Sadeghinezhad E, Mehrali M, Syuhada NI, Gharehkhani S. Experimental investigation on the use of reduced graphene oxide and its hybrid complexes in improving closed conduit turbulent forced convective heat transfer. Experimental Thermal and Fluid Science. 2015 Sep 1; 66:290-303. https://doi.org/10.1016/j.expthermflusci.2015.03.022
  • [80] Wang J, Zhu J, Zhang X, Chen Y. Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Exp Therm Fluid Sci 2013; 44:716–21. https://doi.org/10.1016/j.expthermflusci.2012.09.013.
  • [81] Bai Y, Park IS, Lee SJ, Bae TS, Watari F, Uo M, Lee MH. Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent. Carbon. 2011 Sep 1;49(11):3663-71. https://doi.org/10.1016/j.carbon.2011.05.002
  • [82] Rausch J, Zhuang RC, Mäder E. Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media. Composites Part A: Applied Science and Manufacturing. 2010 Sep 1;41(9):1038-46. https://doi.org/10.1016/j.compositesa.2010.03.007
  • [83] Ghozatloo A, Rashidi AM, Shariaty-niasar M, Morad A, Shariaty-niasar M. Effects of surface modification on the dispersion and thermal conductivity of CNT/water nanofluids. Int Commun Heat Mass Transf 2014; 54:1–7. https://doi.org/10.1016/j.icheatmasstransfer.2014.02.013.
  • [84] Nasiri A, Shariaty-Niasar M, Rashidi A, Amrollahi A, Khodafarin R. Effect of dispersion method on thermal conductivity and stability of nanofluid. Experimental thermal and fluid science. 2011 May 1;35(4):717-23. https://doi.org/10.1016/j.expthermflusci.2011.01.006
  • [85] Murshed SM, de Castro CA, Lourenco MJ. Effect of surfactant and nanoparticle clustering on thermal conductivity of aqueous nanofluids. Journal of Nanofluids. 2012 Dec 1;1(2):175-9. https://doi.org/10.1166/jon.2012.1020
  • [86] Li X, Zhu D, Wang X, Wang N, Wang Z, Tu S. Effect of pH and Chemical Surfactant on Thermal Conductivity Enhancement of Cu-H2O Nanofluids. InASME 2008 First International Conference on Micro/Nanoscale Heat Transfer 2008 Jan 1 (pp. 569-573). American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/MNHT2008-52271
  • [87] Park SS, Kim NJ. A study on the characteristics of carbon nanofluid for heat transfer enhancement of heat pipe. Renew Energy 2014; 65:123–9. https://doi.org/10.1016/j.renene.2013.07.040.
  • [88] Abbasi SM, Rashidi A, Nemati A, Arzani K. The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram Int 2013; 39:3885–91. https://doi.org/10.1016/j.ceramint.2012.10.232.
  • [89] Jha N, Ramaprabhu S. Synthesis and thermal conductivity of copper nanoparticle decorated multiwalled carbon nanotubes based nanofluids. J Phys Chem C 2008; 112:9315–9. https://doi.org/10.1021/jp8017309
  • [90] Baghbanzadeh M, Rashidi A, Rashtchian D, Lotfi R, Amrollahi A. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids. Thermochim Acta 2012; 549:87–94. https://doi.org/10.1016/j.tca.2012.09.006.
  • [91] Megatif L, Ghozatloo A, Arimi A, Shariati-Niasar M. Investigation of Laminar Convective Heat Transfer of a Novel Tio2-Carbon Nanotube Hybrid Water-Based Nanofluid. Exp Heat Transf 2016; 29:124–38. https://doi.org/10.1080/08916152.2014.973974.
  • [92] Nine J, Batmunkh M, Kim J, Chung H, Jeong H. Investigation of Al 2 O 3 -MWCNTs Hybrid Dispersion in Water and Their Thermal Characterization Delivered by Ingenta 2012;12:4553–9. https://doi.org/10.1166/jnn.2012.6193.
  • [93] Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 2006; 49:240–50. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009.
  • [94] Liu MS, Ching-Cheng Lin M, Huang I Te, Wang CC. Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf 2005; 32:1202–10. https://doi.org/10.1016/j.icheatmasstransfer.2005.05.005.
  • [95] Hemmat Esfe M, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT-SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications: An experimental based study. J Therm Anal Calorim 2018; 131:1437–47. https://doi.org/10.1007/s10973-017-6680-y.
  • [96] Yang Y, Grulke EA, Zhang ZG, Wu G. Thermal and rheological properties of carbon nanotube-in-oil dispersions. Journal of Applied Physics. 2006 Jun 1;99(11):114307. https://doi.org/10.1063/1.2193161
  • [97] Soltanimehr M, Afrand M. Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Applied Thermal Engineering. 2016 Jul 25; 105:716-23. https://doi.org/10.1016/j.applthermaleng.2016.03.089
  • [98] Kumaresan V, Velraj R. Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids. Thermochim Acta 2012; 545:180–6. https://doi.org/10.1016/j.tca.2012.07.017.
  • [99] Teng TP, Yu CC. Heat dissipation performance of MWCNTs nano-coolant for vehicle. Experimental Thermal and Fluid Science. 2013 Sep 1; 49:22-30. https://doi.org/10.1016/j.expthermflusci.2013.03.007
  • [100] Chen L, Xie H, Li Y, Yu W. Nanofluids containing carbon nanotubes treated by mechanochemical reaction. Thermochemical acta. 2008 Oct 30;477(1-2):21-4. https://doi.org/10.1016/j.tca.2008.08.001
  • [101] Mirbagheri MH, Akbari M, Mehmandoust B. Proposing a new experimental correlation for thermal conductivity of nanofluids containing of functionalized multiwalled carbon nanotubes suspended in a binary base fluid. Int Commun Heat Mass Transf 2018; 98:216–22. https://doi.org/10.1016/j.icheatmasstransfer.2018.09.007.
  • [102] Akhgar A, Toghraie D. An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: Developing a new correlation. Powder Technol 2018; 338:806–18. https://doi.org/10.1016/j.powtec.2018.07.086.
  • [103] Van Trinh P, Anh NN, Hong NT, Hong PN, Minh PN, Thang BH. Experimental study on the thermal conductivity of ethylene glycol-based nanofluid containing Gr-CNT hybrid material. Journal of Molecular Liquids. 2018 Nov 1; 269:344-53. https://doi.org/10.1016/j.molliq.2018.08.071
  • [104] Garbadeen ID, Sharifpur M, Slabber JM, Meyer JP. Experimental study on natural convection of MWCNT-water nanofluids in a square enclosure. Int Commun Heat Mass Transf 2017; 88:1–8. https://doi.org/10.1016/j.icheatmasstransfer.2017.07.019.
  • [105] Sabiha MA, Mostafizur RM, Saidur R, Mekhilef S. Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids. Int J Heat Mass Transf 2016; 93:862–71. https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.071.
  • [106] Tumuluri K, Alvarado JL, Taherian H, Marsh C. Thermal performance of a novel heat transfer fluid containing multiwall carbon nanotubes and microencapsulated phase change materials. International journal of heat and mass transfer. 2011 Dec 1;54(25-26):5554-67. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.031
  • [107] Baby TT, Sundara R. Synthesis of silver nanoparticle decorated multiwalled carbon nanotubes-graphene mixture and its heat transfer studies in nanofluid. AIP Adv 2013;3. https://doi.org/10.1063/1.4789404.
  • [108] Aravind SSJ, Ramaprabhu S. Graphene-multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv 2013; 3:4199–206. https://doi.org/10.1039/c3ra22653k.
  • [109] Abreu B, Lamas B, Fonseca A, Martins N, Oliveira MS. Experimental characterization of convective heat transfer with MWCNT based nanofluids under laminar flow conditions. Heat and Mass Transfer. 2014 Jan 1;50(1):65-74. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.031https://doi.org/10.1007/s00231-013-1226-8
  • [110] Ali AJ, Tugolukov EN. An experimental study on the influence of functionalized carbon nanotubes CNT Taunit series on the thermal conductivity enhancement. IOP Conf Ser Mater Sci Eng 2019;693. https://doi.org/10.1088/1757-899X/693/1/012001.
  • [111] Hemmat Esfe M, Kiannejad Amiri M, Alirezaie A. Thermal conductivity of a hybrid nanofluid: A new economic strategy and model. J Therm Anal Calorim 2018; 134:1113–22. https://doi.org/10.1007/s10973-017-6836-9.
  • [112] Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Applied Thermal Engineering. 2017 Jan 5; 110:1111-9. https://doi.org/10.1016/j.applthermaleng.2016.09.024
  • [113] Ribeiro AP, Lourenço MJ, de Castro CN. Thermal conductivity of ionanofluids. In17th symposium on thermophysical properties, Boulder, USA 2009 Jun 21.
  • [114] Murshed SMS, De Castro CAN, Lourenço MJV, Lopes MLM, Santos FJV. Current research and future applications of nano- and ionano-fluids. J Phys Conf Ser 2012;395. https://doi.org/10.1088/1742-6596/395/1/012117.
  • [115] Castro CAN De, Murshed SMS, Lourenço MJ V, Santos FJ V, Lopes MLM, França JMP. International Journal of Thermal Sciences Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids. Int J Therm Sci 2012; 62:34–9. https://doi.org/10.1016/j.ijthermalsci.2012.03.010.
  • [116] França JM, Vieira SI, Lourenço MJ, Murshed SM, Nieto de Castro CA. Thermal conductivity of [C4mim] [(CF3SO2) 2N] and [C2mim] [EtSO4] and their ionanofluids with carbon nanotubes: experiment and theory. Journal of Chemical & Engineering Data. 2013 Feb 14;58(2):467-76. https://doi.org/10.1021/je301183r
  • [117] Zeng J, Xuan Y. Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids. Appl Energy 2018; 212:809–19. https://doi.org/10.1016/j.apenergy.2017.12.083.
  • [118] Lee SH, Jang SP. Extinction coefficient of aqueous nanofluids containing multi-walled carbon nanotubes. Int J Heat Mass Transf 2013; 67:930–5. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.094.
  • [119] Yousefi T, Shojaeizadeh E, Veysi F, Zinadini S. An experimental investigation on the effect of pH variation of MWCNT-H 2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy 2012; 86:771–9. https://doi.org/10.1016/j.solener.2011.12.003.
  • [120] Chen W, Zou C, Li X, Liang H. Application of recoverable carbon nanotube nanofluids in solar desalination system: An experimental investigation. Desalination 2019:92–101. https://doi.org/10.1016/j.desal.2017.09.025.
  • [121] Saleh H, Alali E, Ebaid A. Medical applications for the flow of carbon-nanotubes suspended nanofluids in the presence of convective condition using Laplace transform. J Assoc Arab Univ Basic Appl Sci 2017; 24:206–12. https://doi.org/10.1016/j.jaubas.2016.12.001.
  • [122] Aly EH, Ebaid A. Exact analytical solution for the peristaltic flow of nanofluids in an asymmetric channel with slip effect of the velocity, temperature and concentration. J Mech 2014; 30:411–22. https://doi.org/10.1017/jmech.2014.13.
  • [123] Akbar NS, Abid SA, Tripathi D, Mir NA. Nanostructures study of CNT nanofluids transport with temperature-dependent variable viscosity in a muscular tube. Eur Phys J Plus 2017;132. https://doi.org/10.1140/epjp/i2017-11378-y
  • [124] Akbar NS, Shoaib M, Tripathi D, Bhushan S, Bég OA. Analytical approach to entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium. J Hydrodyn 2018; 30:296–306. https://doi.org/10.1007/s42241-018-0021-x.
  • [125] Nazari M, Karami M, Ashouri M. Comparing the thermal performance of water, Ethylene Glycol, Alumina and CNT nanofluids in CPU cooling: Experimental study. Exp Therm Fluid Sci 2014; 57:371–7. https://doi.org/10.1016/j.expthermflusci.2014.06.003.
  • [126] Ebrahimi S, Sabbaghzadeh J, Lajevardi M, Hadi I. Cooling performance of a microchannel heat sink with nanofluids containing cylindrical nanoparticles (carbon nanotubes). Heat Mass Transf Und Stoffuebertragung 2010; 46:549–53. https://doi.org/10.1007/s00231-010-0599-1.
  • [127] Park KJ, Jung D. Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning. Energy Build 2007; 39:1061–4. https://doi.org/10.1016/j.enbuild.2006.12.001.
  • [128] Jiang W, Ding G, Peng H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. Int J Therm Sci 2009; 48:1108–15. https://doi.org/10.1016/j.ijthermalsci.2008.11.012.