LARGE EDDY SIMULATION OF FLOW OVER ELLIPTIC CYLINDER ARRAY IN SQUARE CONFIGURATION AT SUBCRITICAL REYNOLDS NUMBERS

Flow over arrays of cylinders of different cross-sections has been an essential area of research interest for a long time. For the estimation of flow characteristics around arrays of cylinders, numerical simulation of the flow past four elliptic cylinders in a square arrangement for a range of spacing ratios is analysed in this paper. Three spacing ratios considered in the present study are 3.45, 4.14 and 5.17. The results from the numerical simulation are compared with the experimental findings obtained previously using square cylinder arrays. The fluid flow modelling is performed by applying three-dimensional LES (Large-eddy simulation) with commercial software ANSYS Fluent 19R1. The results from the simulation for elliptic cylinder arrays involve both quantitative and qualitative analyses in the form of various patterns of flow, drag and lift coefficients, St (Strouhal number) and PSD (Power Spectral Density) plots. The Strouhal number values found for cylinder 1 and cylinder 2 in case of elliptic cylinder arrays are 0.642 and 0.703. It is observed that the force coefficients encountered by the cylinders are moderately varying for different spacing ratios.

___

  • [1] Modi VJ, Dikshit AK. Near-wakes of elliptic cylinders in subcritical flow. AIAA Journal. 1975 Apr;13(4):490-7. doi:10.2514/3.49736.
  • [2] Lugt HJ, Haussling HJ. Laminar flow past an abruptly accelerated elliptic cylinder at 45 incidence. Journal of Fluid Mechanics. 1974 Oct;65(4):711-34. doi:10.1017/S0022112074001613.
  • [3] Ota T, Nishiyama H. Flow around two elliptic cylinders in tandem arrangement. doi:10.1115/1.3242551.
  • [4] Ota T, Nishiyama H, Kominami J, Sato K. Heat transfer from two elliptic cylinders in tandem arrangement. doi:10.1115/1.3246966.
  • [5] Jackson CP. A finite-element study of the onset of vortex shedding in flow past variously shaped bodies. Journal of fluid Mechanics. 1987 Sep;182:23-45. doi:10.1017/S0022112087002234.
  • [6] Mittal R, Balachandar S. Effect of three‐dimensionality on the lift and drag of nominally two‐dimensional cylinders. Physics of Fluids. 1995 Aug;7(8):1841-65. doi:10.1063/1.868500.
  • [7] Wong PT, Ko NW, Chiu AY. Flow characteristics around two parallel adjacent square cylinders of different sizes. Journal of Wind Engineering and Industrial Aerodynamics. 1995 Feb 1;54:263-75. doi:10.1016/0167-6105(94)00046-G.
  • [8] Nair MT, Sengupta TK. Unsteady flow past elliptic cylinders. Journal of fluids and structures. 1997 Aug 1;11(6):555-95. doi:10.1006/jfls.1997.0095.
  • [9] Castiglia D, Balabani S, Papadakis G, Yianneskis M. An experimental and numerical study of the flow past elliptic cylinder arrays. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2001 Nov 1;215(11):1287-301. doi:10.1243/0954406011524658.
  • [10] Franke J, Frank W. Large eddy simulation of the flow past a circular cylinder at ReD= 3900. Journal of wind engineering and industrial aerodynamics. 2002 Oct 1;90(10):1191-206. doi:10.1016/S0167-6105(02)00232-5.
  • [11] Kim MS, Sengupta A. Unsteady viscous flow over elliptic cylinders at various thickness with different Reynolds numbers. Journal of mechanical science and technology. 2005 Mar 1;19(3):877-86. doi:10.1007/BF02916136.
  • [12] Agrawal A, Djenidi L, Antonia RA. Investigation of flow around a pair of side-by-side square cylinders using the lattice Boltzmann method. Computers & fluids. 2006 Dec 1;35(10):1093-107. doi:10.1016/j.compfluid.2005.05.008.
  • [13] Liu Y, Cui ZX. Three-dimensional wake interactions for two side-by-side cylinders in a cross flow. International Journal of Computational Fluid Dynamics. 2006 Jul 1;20(6):379-89. doi:10.1080/10618560601001155.
  • [14] Ibrahim TA, Gomaa A. Thermal performance criteria of elliptic tube bundle in crossflow. International Journal of Thermal Sciences. 2009 Nov 1;48(11):2148-58. doi:10.1016/j.ijthermalsci.2009.03.011.
  • [15] Lam K, Zou L. Experimental study and large eddy simulation for the turbulent flow around four cylinders in an in-line square configuration. International Journal of Heat and Fluid Flow. 2009 Apr 1;30(2):276-85. doi:10.1016/j.ijheatfluidflow.2009.01.005.
  • [16] Kumar MS, Vengadesan S. Large eddy simulations of flow interference between two unequal sized square cylinders. International Journal of Computational Fluid Dynamics. 2009 Dec 1;23(10):671-86. doi:10.1080/10618560903580013.
  • [17] Alawadhi EM. Laminar forced convection flow past an in-line elliptical cylinder array with inclination. Journal of heat transfer. 2010 Jul 1;132(7). doi:10.1115/1.4000061.
  • [18] Peng YF, Sau A, Hwang RR, Yang WC, Hsieh CM. Criticality of flow transition behind two side-by-side elliptic cylinders. Physics of Fluids. 2012 Mar 2;24(3):034102. doi:10.1063/1.3687450.
  • [19] Liu M, Xiao L, Yang L. Experimental investigation of flow characteristics around four square-cylinder arrays at subcritical Reynolds numbers. International Journal of Naval Architecture and Ocean Engineering. 2015 Sep 1;7(5):906-19. doi:10.1515/ijnaoe-2015-0063.
  • [20] Aboulhasan Alavi SM, Safaei MR, Mahian O, Goodarzi M, Yarmand H, Dahari M, Wongwises S. A hybrid finite-element/finite-difference scheme for solving the 3-D energy equation in transient nonisothermal fluid flow over a staggered tube bank. Numerical Heat Transfer, Part B: Fundamentals. 2015 Aug 3;68(2):169-83. doi:10.1080/10407790.2015.1012440.
  • [21] Sudarma AF. RANS numerical simulation of lean premixed bluff body stabilized combustor: Comparison of turbulence models. Journal of Thermal Engineering. 2017 Nov;3(6):1561-73. doi:10.18186/journal-of-thermal-engineering.353668.
  • [22] Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. International Journal of Heat and Mass Transfer. 2018 Nov 1;126:156-63. doi:10.1016/j.ijheatmasstransfer.2018.05.128.
  • [23] Kariman H, Hoseinzadeh S, Heyns PS. Energetic and exergetic analysis of evaporation desalination system integrated with mechanical vapor recompression circulation. Case Studies in Thermal Engineering. 2019 Dec 1;16:100548. doi:10.1016/j.csite.2019.100548.
  • [24] Kariman H, Hoseinzadeh S, Shirkhani A, Heyns PS, Wannenburg J. Energy and economic analysis of evaporative vacuum easy desalination system with brine tank. Journal of Thermal Analysis and Calorimetry. 2019 Nov 2:1-0. doi:10.1007/s10973-019-08945-8.
  • [25] Hoseinzadeh S, Heyns PS, Kariman H. Numerical investigation of heat transfer of laminar and turbulent pulsating Al2O3/water nanofluid flow. International Journal of Numerical Methods for Heat & Fluid Flow. 2019 Sep 20. doi:10.1108/HFF-06-2019-0485.
  • [26] Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. International Journal of Heat and Mass Transfer. 2019 Jul 1;137:1290-300. doi:10.1016/j.ijheatmasstransfer.2019.04.030.
  • [27] Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq RU. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. International Journal of Heat and Mass Transfer. 2019 Jun 1;136:1233-40. doi:10.1016/j.ijheatmasstransfer.2019.03.091.
  • [28] Sarafraz MM, Safaei MR, Tian Z, Goodarzi M, Bandarra Filho EP, Arjomandi M. Thermal assessment of nano-particulate graphene-water/ethylene glycol (WEG 60: 40) nano-suspension in a compact heat exchanger. Energies. 2019 Jan;12(10):1929. doi:10.3390/en12101929.
  • [29] Sarafraz MM, Tian Z, Tlili I, Kazi S, Goodarzi M. Thermal evaluation of a heat pipe working with n-pentane-acetone and n-pentane-methanol binary mixtures. Journal of Thermal Analysis and Calorimetry. 2020 Feb;139(4):2435-45. doi:10.1007/s10973-019-08414-2.
  • [30] Laouira H, Mebarek‐Oudina F, Hussein AK, Kolsi L, Merah A, Younis O. Heat transfer inside a horizontal channel with an open trapezoidal enclosure subjected to a heat source of different lengths. Heat Transfer—Asian Research. 2020 Jan;49(1):406-23. doi:10.1002/htj.21618.
  • [31] Gourari S, Mebarek-Oudina F, Hussein AK, Kolsi L, Hassen W, Younis O. Numerical study of natural convection between two coaxial inclined cylinders. Int J Heat Technol. 2019 Sep;37(3):779-86. doi:10.18280/ijht.370314.
  • [32] Salih SQ, Aldlemy MS, Rasani MR, Ariffin AK, Ya TM, Al-Ansari N, Yaseen ZM, Chau KW. Thin and sharp edges bodies-fluid interaction simulation using cut-cell immersed boundary method. Engineering Applications of Computational Fluid Mechanics. 2019 Jan 1;13(1):860-77. doi:10.1080/19942060.2020.1786461.
  • [33] Baghban A, Sasanipour J, Pourfayaz F, Ahmadi MH, Kasaeian A, Chamkha AJ, Oztop HF, Chau KW. Towards experimental and modeling study of heat transfer performance of water-SiO2 nanofluid in quadrangular cross-section channels. Engineering applications of computational fluid mechanics. 2019 Jan 1;13(1):453-69. doi:10.1080/19942060.2019.1599428.
  • [34] Hoseinzadeh S, Yargholi R, Kariman H, Heyns PS. Exergoeconomic analysis and optimization of reverse osmosis desalination integrated with geothermal energy. Environmental Progress & Sustainable Energy. 2020:e13405. doi:10.1002/ep.13405.
  • [35] Ez Abadi AM, Sadi M, Farzaneh-Gord M, Ahmadi MH, Kumar R, Chau KW. A numerical and experimental study on the energy efficiency of a regenerative Heat and Mass Exchanger utilizing the counter-flow Maisotsenko cycle. Engineering Applications of Computational Fluid Mechanics. 2020 Jan 1;14(1):1-2. doi:10.1080/19942060.2019.1617193.
  • [36] Turan O. Numerical Investigation of Laminar Mixed Convection in a Square Cross-Sectioned Cylindrical Annular Enclosure. Journal of Thermal Engineering. 2020 Jan;6(1):1-5. doi:10.18186/thermal.670863.