DESIGN, PRODUCE AND CONTROL OF A 2-DOF UPPER LIMB EXOSKELETAL ROBOT

Exoskeletal robots are used as high-tech products in the military, health and industrial applications. The integration of robots and humans offers new opportunities for the creation of new assistive technologies that can be used in biomedical, industrial and military applications. This paper presents the mechanical design, modeling and simulation of 2 degrees of freedom (DOF) upper limb exoskeletal robot.  The system can be used both for supporting load lifting and for rehabilitation of upper limbs. A load cell was used to measure the applied load.  Encoders were used to measure the shoulder and elbow joint angles. An electromyograph was developed to measure muscular activation. In this study, simulation was conducted with the PID position control, however the system hardware is applicable for a force control architecture. 

___

  • [1] J. Zurada. (2012). Classifying the risk of work related low back disorders due to manual material handling tasks. Expert Systems with Applications. 39(12), 11125-11134.
  • [2] C. J. Walsh, K. Pasch, H. Herr. (2006). An autonomous, underactuated exoskeleton for load-carrying augmentation. IEEE/RSJ International Conference on Intelligent Robots and Systems, 1410-1415.
  • [3] E. Yagi, D. Harada, M. Kobayashi. (2009). Upper-Limb Power-Assist Control for Agriculture Load Lifting. International Journal of Automation Technology, 3, 716–722.
  • [4] H. G. Kim, J. W. Lee, J. Jang, C. Han and S. Park (2013). Mechanical design of an exoskeleton for load-carrying augmentation. IEEE ISR 2013, 1-5.
  • [5] M. Fontana, R. Vertechy, S. Marcheschi, F. Salsedo, M. Bergamasco. (2014). The Body Extender: A Full-Body Exoskeleton for the Transport and Handling of Heavy Loads. IEEE Robotics & Automation Magazine, 21(4), 34-44.
  • [6] S. Ghobj, A. Akl, A. El-Farr, M. Ayyash, J. Abu-Khalaf. (2017). Mechanical design for a cable driven upper limb exoskeleton prototype actuated by pneumatic rubber muscles. International Conference on Research and Education in Mechatronics (REM), 1-7.
  • [7] K.Huysamen, M.Looze, T. Bosch, J.Ortiz, S.Toxiri, L.W.O'Sullivan. (2018). Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Applied Ergonomics, 68, 125-131.
  • [8] Y. Umetani, Y. Yamada, T. Morizono, T. Yoshida, S. Aoki. (1999). “Skil Mate” wearable exoskeleton robot. IEEE International Conference on Systems, Man, and Cybernetics, 4, 984-988.
  • [9] H. Yu, I. S. Choi, K. L. Han, J. Y. Choi, G. Chung, J. Suh. (2018). Development of an upper-limb exoskeleton robot for refractory construction. Control Engineering Practice, 72, 104-113.
  • [10] K. Kiguchi, T. Tanaka, T. Fukuda. (2004). Neuro-fuzzy control of a robotic exoskeleton with EMG signals. IEEE Transactions on Fuzzy Systems, 12(4), 481-490.
  • [11] K. Kong, D. Jeon. (2006). Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Transactions on Mechatronics, 11(4), 428-432.
  • [12] K. Kiguchi, M. H. Rahman, M. Sasaki, K. Teramoto. (2008). Development of a 3DOF mobile exoskeleton robot for human upper-limb motion assist. Robotics and Autonomous Systems, 56(8), 678-691.
  • [13] D. Naidu, R. Stopforth, G. Bright, S. Davrajh. (2011). A 7 DOF exoskeleton arm: Shoulder, elbow, wrist and hand mechanism for assistance to upper limb disabled individuals. AFRICON, 1-6.
  • [14] G. Ivanova, S. Bulavintsev, J. H. Ryu, J. Poduraev. (2011). Development of an Exoskeleton System for Elderly and Disabled People. International Conference on Information Science and Applications, 1-7.
  • [15] B. Chen, C. H. Zhong, X. Zhao, H. Ma, X. Guan, X. Li, F. Y. Liang, J. C. Y. Cheng, L. Qin, S. W. Law, W. H. Liao. (2017). A wearable exoskeleton suit for motion assistance to paralysed patients. Journal of Orthopaedic Translation, 11, 7-18.
  • [16] K. Huysamen, T. Bosch, M. Looze, K. S. Stadler, E. Graf, L. W. O'Sullivan. (2018). Evaluation of a passive exoskeleton for static upper limb activities. Applied Ergonomics, 70, 148-155.
  • [17] A. Gupta, M. K. O'Malley. (2006). Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Transactions on Mechatronics, 11(3), 280-289.
  • [18] R. Vertechy, A. Frisoli, A. Dettori, M. Solazzi, M. Bergamasco. (2009). Development of a new exoskeleton for upper limb rehabilitation. IEEE International Conference on Rehabilitation Robotics, 188-193.
  • [19] Y. Ren, H. S. Park, L. Q. Zhang. (2009). Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation. IEEE International Conference on Rehabilitation Robotics, 761-765.
  • [20] J. A. Martinez, P. Ng, S. Lu, M. S. Campagna, O. Celik. (2013). Design of Wrist Gimbal: A forearm and wrist exoskeleton for stroke rehabilitation. IEEE 13th International Conference on Rehabilitation Robotics, 1-6.
  • [21] M. Yalçın. (2013). Design, implementation and control of a self-aligning full arm exoskeleton for physical rehabilitation. Master Thesis, Sabancı University.
  • [22] F. Zhang, L. Hua, Y. Fu, H. Chen, S. Wang. (2014). Design and development of a hand exoskeleton for rehabilitation of hand injuries. Mechanism and Machine Theory, 73, 103-116.
  • [23] J. Iqbal, H. Khan, N. G. Tsagarakis, D. G. Caldwell (2014). A novel exoskeleton robotic system for hand rehabilitation – Conceptualization to prototyping. Biocybernetics and Biomedical Engineering, 34(2), 79-89.
  • [24] Y. Ganesan, S. Gobee, V. Durairajah. (2015). Development of an Upper Limb Exoskeleton for Rehabilitation with Feedback from EMG and IMU Sensor. Procedia Computer Science, 76, 53-59.
  • [25] S. R. A. Jafri, M. B. A. Abbasi, S. M. U. A. Shah, A. Hanif, M. Usman. (2017). BIPATRON (Bionic parageliatron): A wearable robot for rehabilitation… Lets Walk!. 2017 First International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT), 1-7.
  • [27] M. E. Aktan, İ. Göker, E. Akdoğan, B. Öztürk. (2017). Design, implementation and performance analysis of a microcontroller based wireless electromyography device. 2017 Medical Technologies National Congress, 1-4.