REVIEW ON POST TREATMENT EMISSION C ONTROL TECHNIQUE BY APPLICATION OF DIESE L OXIDATION CATALYSI S AND DIESEL PARTICU LATE FILTRATION

REVIEW ON POST TREATMENT EMISSION C ONTROL TECHNIQUE BY APPLICATION OF DIESE L OXIDATION CATALYSI S AND DIESEL PARTICU LATE FILTRATION

The toxic nature of exhaust gases released by these engines has led to environmental concerns, affecting its sustainability. The exhaust emission from diesel engine includes carbon monoxide, nitrates, hydrocarbons and particulate matter. Soot particles c ontained in the particulate matter is also found to be carcinogenic in nature and also leads to various lung diseases. Diesel oxidation catalysis system involves oxidation of hydrocarbons, nitrates and soluble organic fraction. Diesel particulate filtratio n blocks the soot particles with the help of alternately plugged diesel particulate filter with porous walls. The regeneration of accumulated soot is one of the major challenges faced by automotive industries for effective implementation of diesel particul ate filtration system. A detailed review on the challenges faced in the implementation of emission control techniques has been carried out in this study and it has been explored from the results of literature study that microwave based regeneration techni que would be an effective technique. This paper provides a platform for understanding the working principle of post treatment emission control techniques and also on the role of regeneration in effective operation of Diesel Particulate Filter.

___

  • [1] Yang, K., Fox, J. T., & Hunsicker, R. (2016). Characterizing diesel particulate filter failure during commercial fleet use due to pinholes, melting, cracking, and fouling. Emission Control Science and Technology, 2(3), 145 155.
  • [2] Shankar, S., Astagi, H. V., Hotti, S. R., Hebbal, O., Dixit, M., Kaushik, S. C., ..& Sharifi shourabi, M. (2016). Effect of Exhaust Gas Recirculation (EGR) on Performance, Emissions and Combustion Characteristics of a Low Heat Rejection (LHR) Diesel Engine Using Pongamia Biodiesel. Journal Of Thermal Engineering , 2(6), 1007 1016.
  • [3] Liati, A., Schreiber, D., Dimopoulos Eggenschwiler, P., & Arroyo Rojas Dasilva, Y. (2013). Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study. Environmental science & technology, 47(24), 14495 14501.
  • [4] McClellan, R . O., Hesterberg, T. W., & Wall, J. C. (2012). Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology. Regulatory Toxicology and Pharmacology, 63(2), 225 258.
  • [5] C. Kurien and A. K. Srivasta va (2017), “Investigation on power aspects in impressed current cathodic protection system,” Journal of Corrosion Science and Engineering, vol. 20.
  • [6] Porpatham, E., Ramesh, A., & Nagalingam, B. (2007). Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine. International Journal of Hydrogen Energy, 32(12), 2057 2065.
  • [7] Sindhu, R., Rao, G. A. P., & Murthy, K. M. (2017). Effective reduction of NOx emissions from diesel engine using split injections. Alexandria Engineering Journal.
  • [8] Guan, C., Li, X., Liao, B., & Huang, Z. (2016). Effects of fuel injection strategies on emissions characteristics of a diesel engine equipped with a particle oxidation catalyst (POC). Journal of Environmental Chemical Engineering, 4(4), 4822 4829.
  • [9] Pandey, S., Diwan, P., Sahoo, P. K., & Thipse, S. S. (2018). A review of combustion control strategies in diesel HCCI engines. Biofuels, 9(1), 61 74.
  • [10] Chintala, V., Kumar, S., & Pandey, J. K. (2018). A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle. Renewable and Sustainable Energy Reviews, 81, 493 509.
  • [11] Hotti, S., & Hebbal, O. (2015). Biodiesel production and fuel properties from non edible Champaca (Michelia champaca) seed oil for us e in diesel engine. Journal of Thermal Engineering, 1(1), 330 336.
  • [12] Zhang, Z. H., Chua, S. M., & Balasubramanian, R. (2016). Comparative evaluation of the effect of butanol diesel and pentanol diesel blends on carbonaceous particulate composition and p article number emissions from a diesel engine. Fuel, 176, 40 47.
  • Wang, D., Liu, Z. C., Tian, J., Liu, J. W., & Zhang, J. R. (2012). Investigation of particle emission characteristics from a diesel engine with a diesel particulate filter for alternativ e fuels. International Journal of Automotive Technology, 13(7), 1023 1032.
  • [14] Caliskan, H., & Mori, K. (2017). Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulat e filter (DPF) after treatment systems. Energy, 128, 128 144.
  • [15] Kurien C., Srivastava A.K. (2018) Active Regeneration of Diesel Particulate Filter Using Microwave Energy for Exhaust Emission Control. In: Singh R., Choudhury S., Gehlot A. (eds) Intellige nt Communication, Control and Devices. Advances in Intelligent Systems and Computing, vol 624. Springer, Singapore.
  • [16] Carrillo, C., DeLaRiva, A., Xiong, H., Peterson, E. J., Spilde, M. N., Kunwar, D., ... & Challa, S. R. (2017). Regenerative trapping: H ow Pd improves the durability of Pt diesel oxidation catalysts. Applied Catalysis B: Environmental, 218, 581 590.
  • [17] Taibani, A. Z., & Kalamkar, V. (2012). Experimental and computational analysis of behavior of three way catalytic converter under axial a nd radial flow conditions. International Journal of Fluid Machinery and Systems, 5(3), 134 142.
  • [18] Zheng, M., & Banerjee, S. (2009). Diesel oxidation catalyst and particulate filter modeling in active flow configurations. Applied Thermal Engineering, 29( 14 15), 3021 3035.
  • [19] Huang, H., Jiang, B., Gu, L., Qi, Z., & Lu, H. (2015). Promoting effect of vanadium on catalytic activity of Pt/Ce Zr O diesel oxidation catalysts. Journal of Environmental Sciences, 33, 135 142.
  • [20] Azis, M. M., Auvray, X., Olsson , L., & Creaser, D. (2015). Evaluation of H2 effect on NO oxidation over a diesel oxidation catalyst. Applied Catalysis B: Environmental, 179, 542 550.
  • [21] Jiao, P., Li, Z., Shen, B., Zhang, W., Kong, X., & Jiang, R. (2017). Research of DPF regeneration w ith NOx PM coupled chemical reaction. Applied Thermal Engineering, 110, 737 745.
  • [22] Yoon, C. S., & Cho, G. B. (2009). Study of Design & CFD Analysis for Partial DPF Utilizing Metal Foam. Transactions of the Korean Society of Automotive Engineers, 17(1), 24 34.
  • [23] K. Abay and U. Colak (2018), “Computational Fluid Dynamics Analysis of Flow and Combustion,” Journal of Thermal Engineering, vol. 4, no. 2, pp 1878 1895.
  • [24] Fornarelli, F., Camporeale, S., Dadduzio, R., Fortunato, B., & Torresi, M. (2015). Nu merical simulation of the flow field and chemical reactions within a NSC diesel catalyst. Energy Procedia, 82, 381 388.
  • [25] D. Khan and Z. Gul (2017), “Performance Map Measurement, Zero Dimensional Modelling & Vibration Analysis of A Single Cylinder Diese l Engine,” Journal of Thermal Engineering, vol. 3, no. 4, pp. 1391 1410, 2017.
  • [26] Arthanareeswaren, G., & Varadarajan, K. N. (2015). CFD study on pressure drop and uniformity index of three cylinder LCV exhaust system. Procedia Engineering, 127, 1211 121 8.
  • [28] Lee, G. W., Yoon, K., Chun, B., & Jung, H. W. (2018). Lattice Boltzmann simulations for wall flow dynamics in porous ceramic diesel particulate filters. Applied Surface Science, 429, 72 80.
  • [29] Lapuerta, M., Rodríguez Fernández, J., & Oliva, F. (2 012). Effect of soot accumulation in a diesel particle filter on the combustion process and gaseous emissions. Energy, 47(1), 543 552.
  • [30] Feng, X., Ge, Y., Ma, C., Tan, J., Yu, L., Li, J., & Wang, X. (2014). Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst. Science of the Total Environment, 472, 56 62.
  • [31] Louis, C., Liu, Y., Martinet, S., D'Anna, B., Valiente, A. M., Boreave & André, M. (2017). Dilution effects on ultrafine particle emissions from Euro 5 and Euro 6 diesel and gasoline vehicles. Atmospheric Environment, 169, 80 88.
  • [32] Dittler, A. (2017). The Application of Diesel Particle Filters From Past to Present and Beyond. Topics in Catalysis, 60(3 5), 34 2 347.
  • [33] H. Hardenberg (1987), “Urban Bus Application of a Ceramic Fiber Coil Particulate Trap,” SAE Technical Paper, no. 870011, p. 12.
  • [34] D. H. and E. H. Hardenberg H (1987), “Particulate Trap Regeneration Induced by Means of Oxidizing Agents inject ed Into the Exhaust Gas,” SAE Technical Paper, no. 870016, p. 16.
  • [35] Suarez Bertoa, R., & Astorga, C. (2018). Impact of cold temperature on Euro 6 passenger car emissions. Environmental Pollution, 234, 318 329.
  • [36 Millo, F., Rafigh, M., Andreata, M., V lachos, T., Arya, P., & Miceli, P. (2017). Impact of high sulfur fuel and de sulfation process on a close coupled diesel oxidation catalyst and diesel particulate filter. Fuel, 198, 58 67.
  • [37] Kang, W., Choi, B., Jung, S., & Park, S. (2018). PM and NOx re duction characteristics of LNT/DPF+ SCR/DPF hybrid system. Energy, 143, 439 447.
  • [38] Bollerhoff, T., Markomanolakis, I., & Koltsakis, G. (2012). Filtration and regeneration modeling for particulate filters with inhomogeneous wall structure. Catalysis toda y, 188(1), 24 31.
  • [39] Bensaid, S., Marchisio, D. L., & Fino, D. (2010). Numerical simulation of soot filtration and combustion within diesel particulate filters. Chemical Engineering Science, 65(1), 357 363.
  • [40] Zhao, H., Ge, Y., Zhang, T., Zhang, J., Tan, J., & Zhang, H. (2014). Unregulated emissions from diesel engine with particulate filter using Fe based fuel borne catalyst. Journal of Environmental Sciences, 26(10), 2027 2033.
  • [41] Palma, V., Ciambelli, P., Meloni, E., & Sin, A. (2015). Catalytic DPF microwave assisted active regeneration. Fuel, 140, 50 61.
  • [42] Stępień, Z., Ziemiański, L., Żak, G., Wojtasik, M., Jęczmionek, Ł., & Burnus, Z. (2015). The evaluation of fuel borne catalyst (FBC’s) for DPF re generation. Fuel, 161, 278 286.
  • [43] P. Salvat, O. Marez and G. and Belot (2000), “Passenger Car Serial Application of a Particulate Filter System on a Common Rail Direct Injection Diesel Engine,” SAE Technical Paper, no. 2000 01 0473, p. 15.
  • [44] Pérez, V . R., & Bueno López, A. (2015). Catalytic regeneration of diesel particulate filters: comparison of Pt and CePr active phases. Chemical Engineering Journal, 279, 79 85.
  • [45] Yamazaki, K., Sakakibara, Y., Daido, S., & Okawara, S. (2016). Particulate matter oxidation over ash deposited catalyzed diesel particulate filters. Topics in Catalysis, 59(10 12), 1076 1082.
  • [46 Corro, G., Cebada, S., Pal, U., Fierro, J. L. G., & Alvarado, J. (2015). Hydrogen reduced Cu/ZnO composite as efficient reusable catalyst for diesel particulate matter oxidation. Applied Catalysis B: Environmental, 165, 555 565.
  • [47] Palma, V., Ciambelli, P., & Meloni, E. (2013). Catalyst load optimization for microwave susceptible catalysed DP F. CHEMICAL ENGINEERING, 32.
  • [48] He, C., Li, J., Ma , Z., Tan, J., & Zhao, L. (2015). High NO2/NOx emissions downstream of the catalytic diesel particulate filter: An influencing factor study. Journal of Environmental Sciences, 35, 55 61.
  • [49] Ramdas, R., Nowicka, E., Jenkins, R., Sellick, D., Davies, C., & Golunski, S. (2015). Using real particulate matter to evaluate combustion catalysts for direct regeneration of diesel soot filters. Applied Catalysis B: Environmental, 176, 436 443.
  • [50] Palma, V., & Meloni, E. (2016). Microwave assisted regeneration of a catalytic diesel soot trap. Fuel, 181, 421 429.
  • [51] Corro, G., Pal, U., Ayala, E., & Vidal, E. (2013). Diesel soot oxidation over silver loaded SiO2 catalysts. Catalysis today, 212, 63 69.
  • [52] Bai, S., Chen, G., Sun, Q., Wang, G., & Li, G. X. (2017). In fluence of active control strategies on exhaust thermal management for diesel particular filter active regeneration. Applied Thermal Engineering, 119, 297 303.
  • [53] Jiaqiang, E., Xie, L., Zuo, Q., & Zhang, G. (2016). Effect analysis on regeneration speed o f continuous regeneration diesel particulate filter based on NO2 assisted regeneration. Atmospheric Pollution Research, 7(1), 9 17.
  • [54] Rodríguez Fernández, J., Hernández, J. J., & Sánchez Valdepeñas, J. (2016). Effect of oxygenated and paraffinic alterna tive diesel fuels on soot reactivity and implications on DPF regeneration. Fuel, 185, 460 467.
  • [55] Dawei, Q., Jun, L., & Yu, L. (2017). Research on particulate filter simulation and regeneration control strategy. Mechanical Systems and Signal Processing, 87, 214 226.
  • [56] Di Sarli, V., & Di Benedetto, A. (2015). Modeling and simulation of soot combustion dynamics in a catalytic diesel particulate filter. Chemical Engineering Science, 137, 69 78.
  • [57] Bermúdez, V., Serrano, J. R., Piqueras, P., & García Afo nso, O. (2015). Pre DPF water injection technique for pressure drop control in loaded wall flow diesel particulate filters. Applied Energy, 140, 234 245.
  • [58] V. Palma, E. Meloni, M. Caldera, D. Lipari, V. Pignatelli, and V. Gerardi (2016), “Catalytic wall flow filters for soot abatement from biomass boilers,” Chemical Engineering. Transactions, vol. 50, pp. 253 258.
  • [59] Lupše, J., Campolo, M., & Soldati, A. (2016). Modelling soot deposition and monolith regeneration for optimal design of automotive DPFs. Chemical Engineering Science, 151, 36 50.
  • [60] Ranji Burachaloo, H., Masoomi Godarzi, S., Khodadadi, A. A., & Mortazavi, Y. (2016). Synergetic effects of plasma and metal oxide catalysts on diesel soot oxidation. Applied Catalysis B: Environmental, 182, 74 84.
  • [61] Tuler, F. E., Portela, R., Ávila, P., Bortolozzi, J. P., Miró, E. E., & Milt, V. G. (2016). Development of sepiolite/SiC porous catalytic filters for diesel soot abatement. Microporous and Mesoporous Materials, 230, 11 19.
  • [62] Kim, H. J., Han, B ., Hong, W. S., Shin, W. H., Cho, G. B., Lee, Y. K., & Kim, Y. J. (2010). Development of electrostatic diesel particulate matter filtration systems combined with a metallic flow through filter and electrostatic methods. International Journal of Automotive Technology, 11(4), 447 453.
  • [63] Graupner, K., Binner, J., Fox, N., Garner, C. P., Harry, J. E., Hoare, D., ... & Williams, A. M. (2013). Pulsed Discharge Regeneration of Diesel Particulate Filters. Plasma Chemistry and Plasma Processing, 33(2), 467 477.
  • 64] Palma, V., Ciambelli, P., Meloni, E., & Sin, A. (2013). Study of the catalyst load for a microwave susceptible catalytic DPF. Catalysis today, 216, 185 193.
  • [65] V. Palma and E. Meloni (2016), “Microwave susceptible catalytic diesel particulate filter, filter,” Chemical Engineering Transaction, vol. 52, pp. 445 450.
  • [66] Terada, M., Kawamura, K., Kagomiya, I., Kakimoto, K. I., & Ohsato, H. (2007). Effect of Ni substitution on the microwave dielectric properties of cordierite. Journal of the European Ceramic Soc iety, 27(8 9), 3045 3048.
  • [67] Liu, Y., Luo, F., Su, J., Zhou, W., & Zhu, D. (2015). Dielectric and microwave absorption properties of Ti3SiC2/cordierite composite ceramics oxidized at high temperature. Journal of Alloys and Compounds, 632, 623 628.
  • [68] Hauck, H. S. (1970). Design considerations for microwave oven cavities. IEEE Transactions on Industry and General Applications, (1), 74 80.
  • [69] Feulner, M., Seufert, F., Müller, A., Hagen, G., & Moos, R. (2017). Influencing Parameters on the Microwave Bas ed Soot Load Determination of Diesel Particulate Filters. Topics in Catalysis, 60(3 5), 374 380.
  • [70] Zhang, B., Jiaqiang, E., Gong, J., Yuan, W., Zuo, W., Li, Y., & Fu, J. (2016). Multidisciplinary design optimization of the diesel particulate filter in t he composite regeneration process. Applied energy, 181, 14 28.