PERFORMANCE ASSESSME NT OF PHOSPHORIC ACI D FUEL CELL THERMOELECTRIC GENER ATOR HYBRID SYSTEM W ITH ECONOMIC ASPECT

PERFORMANCE ASSESSME NT OF PHOSPHORIC ACI D FUEL CELL THERMOELECTRIC GENER ATOR HYBRID SYSTEM W ITH ECONOMIC ASPECT

Purpose of this paper is to evaluate phosphoric acid fuel cell (PAFC) ther moelectric generator hybrid system with economic and thermoeconomic point of view. Firstly, basic equations of PAFC thermoelectric generator and hybrid system are described. Secondly, basic performance parameters like power output, energy efficiency, exer gy efficiency and exergy destruction rate s are investigated. Finally, cost equations are set up to determine economic results of the considered system, in addition to that, these system are considered by using EXCEM analysis. According to results, the maxi mum total cost of the hybrid system is obtained j= 10900 am 2 , exergy loss ratio to capital cost ( ec ) of the hybrid system increases dramatically after the point where is j= 11000 am 2 Maximum power density, maximum energy efficiency and of the hybrid sy stem are 8735.340 wm 2 , 81.35% and 86.6% respectively.

___

  • [1] Zhao Y, Ou C, Chen J. (2008). A new analytical approach to model and evaluate the performance of a class of irreversible fuel cells, International Journal of Hydrogen Energy, 33, 4161 – 4170.
  • [2] Zhang X, Guo J, Chen J. (2010) . The parametric optimum analysis of a proton exchange membrane (PEM) fuel cell and its load matching, Energy, 35, 5294-5299.
  • [3] Zhang H, Lin G, Chen J. (2011). Performance analysis and multi-objective optimization of a new molten carbonate fuel cell system, International Journal of Hydrogen Energy, 36, 4015 – 4021.
  • [4] Zhang H, Chen L, Zhang J, Chen J. (2014). Performance analysis of a direct carbon fuel cell with molten carbonate electrolyte, Energy, 68, 1-9.
  • [5] Zhang H, Lin G, Chen J. (2012). Multi-objective optimization analysis and load matching of a phosphoric acid fuel cell system, International Journal of Hydrogen Energy, 37, 3438-3446.
  • [6] Yang P, Zhang H, Hu Z. (2016). Parametric study of a hybrid system integrating a phosphoric acid fuel cell with an absorption refrigerator for cooling purposes, International Journal of Hydrogen Energy, 41, 3579 -3590.
  • [7] Chen X , Wang Y, Zahao Y, Zhou Y. (2016). A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system, Energy 101, 359-365.
  • [8] Chen L, Zhang H,Gao S, Yan H. (2014)., Performance optimum analysis of an irreversible molten carbonate fuel cell - Stirling heat engine hybrid system, Energy 64, 923-930.
  • [9] Chen L, Gao S, Zhang H. (2013). Performance Analysis and Multi-Objective Optimization of an Irreversible Solid Oxide Fuel Cell-Stirling Heat Engine Hybrid System, Int. J. Electrochem. Sci., 8, 10772 - 10787.
  • [10]Açıkkalp E., Thermo-environmental performance analysis of irreversible solid oxide fuel cell – Stirling heat engine, International Journal of Ambient Energy, article in press DOI: 10.1080/01430750.2017.1345011.
  • [11] Yang P, Zhang H . ( Parametric analysis of an irreversible proton exchange membrane fuel cell/absorption refrigerator hybrid system, Energy 85 458 467.
  • [12] Zhao Y, Chen J . (2009). Modeling and optimiz ation of a typical fuel cell heat engine hybrid system and its parametric design criteria, Journal of Power Sources 186 96 103.
  • [13] Zhang H, Lin G, Chen J . ( Performance Evaluation and Parametric Optimum Criteria of an Irreversible Molten Carbon ate Fuel Cell Heat Engine Hybrid System, Int. J. Electrochem. Sci ,,. 6, 4714 4729.
  • [14] Zhang X, Chen J . ( Performance analysis and parametric optimum criteria of a class of irreversible fuel cell/heat engine hybrid systems, Internationa l Journal o f Hydrogen Energy 35, 284 293.
  • [15] Zhang X,Wang Y, Guo J, Shih T M, Chen J. (2014). A unified model of high temperature fuel cell heat engine hybrid systems and analyses of its optimum performances, International Journal of Hydrogen Energy 39 1811 1825.
  • [16] Zhang X, Su S, Chen J, Zhao Y, Brandon N . ( A new analytical approach to evaluate and optimize the performance of an irreversible solid oxide fuel cell gas turbine hybrid system, International Journal of Hydrogen Energy 36 15304 15312
  • [17] Haseli H, Dincer I, Naterer GF (2008). Thermodynamic analysis of a combined gas turbine power system with a solid oxide fuel cell through exergy, Thermochimica Acta 480 1 9
  • [18] Açıkkalp E. ( Ecologic and Sustainable Objective Thermodynamic Evaluation of Molten Carbonate Fuel Cell Supercritical CO 2 Brayton Cycle Hybrid System, International Journal of Hydrogen Energy 42 6272 6280.
  • [19] Haseli H, Dincer I, Naterer G F . ( Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell, International Journal of Hydrogen Energy 33 5811 5822.
  • [20] Açıkkalp E. ( Performance analysis of irreversible solid oxide fuel cell Brayton heat eng ine with ecological based thermo environmental criterion, Energy Conversion and Management, 148 279 286
  • [21] Zhang X, Guo J, Chen J. (2012). Influence of multiple irreversible losses on the performance of a molten carbonate fuel cell gas turbine hybrid system, International Journal of Hydrogen Energy 37 , 8664 8671.
  • [22] Sánchez D , Chacartegui R , Jiménez Espadafor F , Sánchez T. (2009). A new concept for high temperature fuel cell hybrid systems using supercritical carbon dioxide, J. Fuel Cell Sci. Tech no l., 6 021306.
  • [23] Sanchez D , Munoz de Escalona J.M , Chacartegui R , Munoz A.A., Sanchez T. ( A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art tech nology, Journal of Power Sources 196 4347 4354.
  • [24] Zhang X, Liu H, Ni M, Chen J. ( Performance evaluation and parametric optimum design of a syngas molten carbonate fuel cell and gas turbine hybrid system, Renewable Energy 80 407 414.
  • [25] M ehrpooya M ,Bahramian P, Pourfayaz F, Rosen M.A. Introducing and analysis of a hybrid molten carbonate fuel cell supercritical carbon dioxide Brayton cycle system, Sustainable Energy Technologies and Assessments 18 (2016) 100 106.
  • [26] Zhang H, Su S, Lin G, Chen J. ( 2012). Performance Analysis and Multi Objective Optimization of a Molten Carbonate Fuel Cell Braysson Heat Engine Hybrid System, Int. J. Electrochem. Sci .., 7 3420 3435.
  • [27] Açıkkalp E. (2017). Performance analysis of irreversible molten carbonate fuel cell Braysson heat engine with ecological objective approach, Energy Conversion and Management 13 , 2432 2 437
  • [28] Huang C, Pan Y, Wang Y, Su G, Chen J. (2016). An effic ient hybrid system using a thermionic generator to harvest waste heat from a reforming molten carbonate fuel cell, Energ y Conversion and Management 121, 186 193.
  • [29 ]Mahmoudi S.M.S., Ghavimi A. (2016). Thermoeconomic analysis and multi objective optimi zation of a molten carbonate fuel cell Supercritical carbon dioxide Organic Rankine cycle integrated power system using liquefied natural gas as heat si nk, Applied Thermal Engineering, 107 1219 1232.
  • [30] Chen L, Gong J, Sun F, Wu C. 2002 ). Effect of heat transfer on the performance of thermoelectric generators , Int J ThermSci , 41(1) 1), 95 9 9.
  • [31] Meng F, Chen L, Sun F. (2010). Effects of heat reservoir temperatures on the performance of thermoelectric heat pump driven by thermoelectric generator , Int J Low Carbon Technol ,. 5(4) 273 82.
  • [32] Meng F, Chen L, Sun F, Wu C. 2009 ), Thermodynamic analysis and optimisation of a new type thermoelectric heat pump driven by a thermoelectric generator , Int J Ambient Energy , 30(2), 95 101.
  • [33]Chen L, Meng F, Sun F. Effect of heat transfer on the performance of thermoelectric generator driven thermoelectric refrigerator system. Cryogenics 2012;52(1):58 65.
  • [34] Kaushik S, Manikandan S, Hans R. 2015 ). Energy and exergy analysis of thermoelectric heat pump system , Int J Heat Mass Transfer , 86 , 843 52.
  • [35] Arora R, Kaushik SC, Arora R. (2015). Multi objective and multi parameter optimization of two stage thermoelectric generator in electrically series and parallel configurations through NSGA II , Energy , 30(91) 91), 242 2 54.
  • [36] Manikandan .., Kaushik S.C. (2015). Thermodynamic studies and maximum power point tracking in thermoelectric generator thermoelectric cooler combined system, Cryogenics , 6752 67 62
  • [37] Meng F K, Chen L G, Sun F R. (2011). A numerical model and c omparative investigation of a thermoelectric generator with multi irreversibilities Energy, 36(5) 5), 3513 3522.
  • [38] Chen L G, Meng F K, Sun F R. (2012). Maximum powe r and efficiency of an irreversible thermoelectric generator with a generalized heat transfer law , Scientia Iranica, Transaction B: Mechanical Engineering, 19 ( 5), 1337 1345
  • [39] Chen L G, Meng F K, Sun F R. (2013). Internal and external simultaneous opti mization of an irreversible multielement thermoelectric generator for maximum power output , International Journal of Low Carbon Technologies, 8 ( 3), 188 196.
  • [40] Meng F K, Chen L G, Sun F R, Yang B. (2014). Thermoelectric power generation driven by bla st furnace slag flushing water , Energy, 66 , 965 972.
  • [41] Xiong B, Chen L G, Meng F K, Sun F R. ( Modeling and performance analysis of a two stage thermoelectric energy harvesting system from blast furnace slag water waste heat Energy, 77 , 562 56 9.
  • [42] Chen L G, Meng F K, Sun F R. (2016). Thermodynamic analyses and optimizations for thermoelectric devices: the state of the arts , Science China: Technological Sciences, 59(3) 3), 442 455.
  • [43] Meng F K, Chen L G, Sun F R. ( Effects of thermocou ples physical dimension on the performance of TEG TEH syste m , International Journal of Low Carbon Technologies, 11(3) 3), 375 382.
  • [44] Meng F K, Chen L G, Feng Y L, Xiong B. 2017 ). Thermoelectric generator for industrial gas phase waste heat recovery , En ergy, 135 , 83 90.
  • [45] Meng F K, Chen L G, Xie Z H, Ge Y L. 2017 ). Thermoelectric generator with air cooling heat recovery device from wastewater Thermal Science and Engineering Progress, 4 106 112.
  • [46] Chen X , Wang Y, Cai L, Zhou Y . (2015), Maxim um power output and load matching of a phosphoric acid fuel cell thermoelectric generator hybrid syste m, Journal of Power Sources 294, 430 436.
  • [47] Zhao M , Zhang H, Hua Z, Zhang Z, Zhang J . (2015). Performance characteristics of a direct carbon fuel cell /thermoelectric generator hybrid system, Energy Conversion and Management 8 9, 683 689.
  • [48] Chen X, Chen L, Guo J, Chen J . ( An available method exploiting the waste heat in a proton exchange membrane fuel cell system, Internationa l Journal of Hydr ogen Energy 36, 6099 6104.
  • [49] Feng H J, Chen L G, Xie Z H , Sun F R. (2015). Constructal optimization for a single tubular solid oxide fuel cell , Journal of Power Sources, 286 , 406 413.
  • [50] Abbas S . S .., Ahmadi M.H. H., Ahmadi M.A. ( 2015). Optimization p erformance and thermodynamic analysis of an irreversible nano scale Brayton cycle operating with Maxwell Boltzmann gas , Energy Conversion and Management 101 , 592 605.
  • [51] Ahmadi M H., Ahmad M.A. A., Pourfayaz F.F., Bidi M ( Thermodynamic analysis and o ptimization for an irreversible heat pump working on reversed Brayton cycle. Energy Conversion and Management 110 260 267.
  • [52] Ahmadi M.H , Ahmadi M.A, A,. ( 2016). Multi objective optimization of performance of three heat source irreversible refrigerators b ased algorithm NSGAII Renewable and Sustainable Energy Reviews 60 784 794.
  • [53] Ahmadi M.H ., Sayyaadi H, Hosseinzadeh H . ( 2015). Optimization of Output Power and Thermal Efficiency of Solar Dish Stirling Engine Using Finite Time Thermodynamic Analysis Heat Transfer Asian Research 44, 347 376.
  • [54] Dincer I Rosen M.A , Exergy: Energy, Environment and Sustainable Development, Elsevier Science, 2 edition.
  • [55] Aminyavari M.M., Haghighat A, Mamaghani A . S Najafi B, Rinaldi F. ( Exergetic, economic, and environmental evaluati ons and multi objective optimization of an internal reforming SOFC gas turbine cycle coupled with a Rankine cycle, Applied Thermal Engineering 108 833 846.
  • [56] Kwak H Y , Lee H S , Jung J Y , Jeon J S , Park D R (2004) . Exergetic and thermoeconomic analy sis of a 200 kW phosphoric acid fuel cell plant, Fuel 83 2087 2094
  • [57] Staffell I , Green R. (2013). The cost of domestic fuel cell micro CHP systems, International Journal of Hydrogen Energy 38 1088 1102
  • [58]https://energy.gov/sites/prod/files/2015/ 02/f19/QTR%20Ch8%20%20Thermoelectic%20Materials%20TA% 20Feb 13 2015.pdf (access date, 07.04.2017).
  • [59] Kazim A.A., (2005). Exergoeconomic analysis of a PEM fuel cell at various operating conditions, Energy Conversion and Management 46 1073 1081