ENERGY AND EXERGY INVESTIGATIONS OF R1234yf AND R1234ze ASR134a REPLACEMENTS IN MECHANICALLY SUBCOOLED VAPOUR COMPRESSION REFRIGERATION CYCLE

ENERGY AND EXERGY INVESTIGATIONS OF R1234yf AND R1234ze ASR134a REPLACEMENTS IN MECHANICALLY SUBCOOLED VAPOUR COMPRESSION REFRIGERATION CYCLE

The aim of present work is the evaluation of mechanically subcooled simple vapour compression refrigeration system on the basis of energy and exergy analysis, and compatibility of alternative low GWP and zero ODP HFOs R1234yf and R1234ze to replace HFC 134a. A computer program has been developed in Engineering Equation solver software to compute the system performance parameters such as COP, exergetic efficiency, total exergy destruction and exergy destruction ratio. The effect of degree of subcooling (5 to 30℃), evaporator temperature (-30℃ to 15℃), effectiveness of liquid vapour heat exchanger (0.2 to 1.0) and compressor efficiency (0.4 to 1.0) has been investigted on the performance parameters viz. exergy desturction, exergy destruction ratio (EDR) and exergetic efficiency of the system components. The results of current analysis highlight that the R1234ze is the best alternate refrigerant considered in the analysis and can replace R134a as the COP and exergetic efficiency of R1234ze are 1.87% and 1.88% more than that of R134a for 30℃ of subcoooling. However, R1234yf offers lower performance than R134a. The components condenser and evaporator are the sites of highest and lowest exergy destruction respectively for the refrigerants considered.

___

  • [1] Ahmadi P, Dincer I, Rosen MA. Thermodynamic modeling and multi-objective evolutionary-based optimization of a new multigeneration energy system. Energy Conversion and Management. 2013 Dec 1;76: 282-300. https://doi.org/10.1016/j.enconman.2013.07.049
  • [2] Ansari NA, Yadav B, Kumar J. Theoretical exergy analysis of HFO-1234yf and HFO-1234ze as an alternative replacement of HFC-134a in simple vapour compression refrigeration system. International Journal of Scientific & Engineering Research. 2013 Aug; 4(8):137.https://doi.org/ 10.21275/v5i4.nov162977
  • [3] Arora A, Arora BB, Pathak BD, Sachdev HL. Exergy analysis of a vapour compression refrigeration system with R-22, R-407C and R-410A. International journal of Exergy. 2007 Jan 1;4(4):441-54. https://doi.org/10.1504/IJEX.2007.015083
  • [4] Arora A, Dixit M, Kaushik SC. Computation of optimum parameters of a half effect water lithium bromide vapour absorption refrigeration system. Journal of Thermal Engineering. 2016 Apr 1;2 (2):683-92. https://doi.org/10.18186/jte.19785
  • [5] Arora A, Dixit M, Kaushik SC. Energy and exergy analysis of a double effect parallel flow LiBr/H2O absorption refrigeration system. Journal of Thermal Engineering. 2016 Jan 1;2 (1):541-9. https://doi.org/10.18186/jte.63682
  • [6] Arora A, Kaushik SC. Theoretical analysis of a vapour compression refrigeration system with R502, R404A and R507A. International journal of refrigeration. 2008 Sep 1;31 (6):998-1005.
  • [7] Standard AS. Designation and safety classification of refrigerants. Ansi/Ashrae Standard. 2010:34-2007.
  • [8] Azzouzi D, Kelkouli M, Amaryoucef F. Parametric study of the wire-on-tube condenser subcooling effect on the performance of vapor compression refrigeration system. Applied Thermal Engineering. 2017 Jul 25;122: 528-34. https://doi.org/10.1016/j.applthermaleng.2017.05.003
  • [9] Bejan AB. A., Tsatsaronis, G., Moran, M. Thermal Design & Optimization. 1996.
  • [10] Bitzer Refrigerant Report 18: BITZER Khulmaschinenbau GmbH EschenbrunntestraBe 15//71065 Sindelfingen//Germany.
  • [11] Cecchinato L, Corradi M, Minetto S. Energy performance of supermarket refrigeration and air conditioning integrated systems. Applied Thermal Engineering. 2010 Oct 1;30(14-15):1946-58. https://doi.org/10.1016/j.applthermaleng.2012.04.049
  • [12] Centre for Energy Advancement through Technological Innovation (CEATI): Refrigeration system energy efficiency reference guide, 2010
  • [13] Devecioğlu AG, Oruc V. Characteristics of some new generation refrigerants with low GWP. Energy Procedia. 2015 Aug 1;75: 1452-7. https://doi.org/10.1016/j.egypro.2015.07.258
  • [14] Dincer I, Kanoglu M. Refrigeration systems and applications. New York: Wiley; 2010 May.
  • [15] Dixit M, Kaushik SC, Arora A. Energy and exergy analysis of absorption-compression cascade refrigeration system. Journal of Thermal Engineering. 2017; 3(5):1466-77. https://doi.org/10.18186/jte.42367
  • [16] Dixit M, Arora A, Kaushik SC. Energy and exergy analysis of a waste heat driven cycle for triple effect refrigeration. Journal of Thermal Engineering. 2016 Oct 1;2(5):954-61. https://doi.org/10.18186/jte.84533
  • [17] Esen H, Inalli M, Esen M. Technoeconomic appraisal of a ground source heat pump system for a heating season in eastern Turkey. Energy Conversion and Management. 2006 Jun 1;47(9-10):1281-97. https://doi.org/10.1016/j.enconman.2005.06.024
  • [18] Esen H, Inalli M, Esen M, Pihtili K. Energy and exergy analysis of a ground-coupled heat pump system with two horizontal ground heat exchangers. Building and environment. 2007 Oct 1;42(10):3606-15. https://doi.org/10.1016/j.buildenv.2006.10.014
  • [19] Fang Y, Croquer S, Poncet S, Aidoun Z, Bartosiewicz Y. Drop-in replacement in a R134 ejector refrigeration cycle by HFO refrigerants. international journal of refrigeration. 2017 May 1;77:87-98. https://doi.org/10.1016/j.ijrefrig.2017.02.028
  • [20] Honeywell, Solstice yf- a green solution to a global challenge, Cool for all concerned,
  • [21] Honeywell, Solstice ze Refrigerants (HFO-1234ze), Low GWP hydrofluoroolefins(HFO), The environmental alternative to traditional refrigerants
  • [22] Janković Z, Atienza JS, Suárez JA. Thermodynamic and heat transfer analyses for R1234yf and R1234ze (E) as drop-in replacements for R134a in a small power refrigerating system. Applied Thermal Engineering. 2015 Apr 5;80:42-54. https://doi.org/10.1016/j.applthermaleng.2015.01.041
  • [23] Zubair SM. Design and rating of an integrated mechanical-subcooling vapor-compression refrigeration system. Energy Conversion and Management. 2000 Jul 1;41(11):1201-22. https://doi.org/10.1016/S0196- 8904(99)00169-7
  • [24] Klein, S. A., Alvarado, F.: Engineering Equation Solver. F Chart Software, Middleton, WI. Version 9. 224- 3D, 2012.
  • [25] Koeln JP, Alleyne AG. Optimal subcooling in vapor compression systems via extremum seeking control: Theory and experiments. International journal of refrigeration. 2014 Jul 1;43:14-25. https://doi.org/10.1016/j.ijrefrig.2014.03.012
  • [26] Kotas TJ. The exergy method of thermal plant analysis. Elsevier; 2013 Oct 22.
  • [27] Lemmon EW, Huber ML, McLinden MO. Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Version 9.0.
  • [28] Llopis R, Cabello R, Sánchez D, Torrella E. Energy improvements of CO2 transcritical refrigeration cycles using dedicated mechanical subcooling. International Journal of Refrigeration. 2015 Jul 1;55:129-41. https://doi.org/10.1016/j.ijrefrig.2015.03.016
  • [29] Llopis, R, Sánchez, D, Sanz-Kock, C, Cabello, R, Torrella, E. Energy and environmental comparison of twostage solutions for commercial refrigeration at low temperature: Fluids and systems. Applied Energy. 2015 138:133 -142. https://doi.org/10.1016/j.apenergy.2014.10.069
  • [30] Maurizio A, Giovanni C. Power reduction in vapour compression cooling cycles by power regeneration. Energy Procedia. 2015 Dec 1;81:1184-97. https://doi.org/10.1016/j.egypro.2015.12.148
  • [31] Mota-Babiloni A, Navarro-Esbrí J, Barragán-Cervera Á, Molés F, Peris B, Verdú G. Commercial refrigeration–an overview of current status. International journal of refrigeration. 2015 Sep 1;57:186-96. https://doi.org/10.1016/j.ijrefrig.2015.04.013
  • [32] Mota-Babiloni A, Navarro-Esbrí J, Barragan A, Moles F, Peris B. Drop-in energy performance evaluation of R1234yf and R1234ze (E) in a vapor compression system as R134a replacements. Applied Thermal Engineering. 2014 Oct 5;71(1):259-65. https://doi.org/10.1016/j.applthermaleng.2014.06.056
  • [33] Mota-Babiloni A, Navarro-Esbrí J, Barragán-Cervera Á, Molés F, Peris B. Experimental study of an R1234ze (E)/R134a mixture (R450A) as R134a replacement. International Journal of Refrigeration. 2015 Mar 1;51:52-8. https://doi.org/10.1016/j.ijrefrig.2014.12.010
  • [34] Mota-Babiloni A, Navarro-Esbrí J, Barragán-Cervera Á, Molés F, Peris B. Analysis based on EU Regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems. International journal of refrigeration. 2015 Apr 1;52:21-31. https://doi.org/10.1016/j.ijrefrig.2014.12.021
  • [35] Pigani L, Boscolo M, Pagan N. Marine refrigeration plants for passenger ships: Low-GWP refrigerants and strategies to reduce environmental impact. International Journal of Refrigeration. 2016 Apr 1;64:80-92. https://doi.org/10.1016/j.ijrefrig.2016.01.016
  • [36] Qureshi BA, Zubair SM. Mechanical sub-cooling vapor compression systems: Current status and future directions. International journal of refrigeration. 2013 Dec 1;36(8):2097-110. https://doi.org/10.1016/j.ijrefrig.2013.07.026
  • [37] Qureshi BA, Inam M, Antar MA, Zubair SM. Experimental energetic analysis of a vapor compression refrigeration system with dedicated mechanical sub-cooling. Applied Energy. 2013 Feb 1;102:1035-41. https://doi.org/10.1016/j.apenergy.2012.06.007
  • [38] Regulation (EU) No 517/2014 of the European Parliament and of the Council of Fluorinated Greenhouse Gases and Repealing Regulation (EC), No 842/2006 (2014)
  • [39] Şahin AŞ. Performance analysis of single-stage refrigeration system with internal heat exchanger using neural network and neuro-fuzzy. Renewable energy. 2011 Oct 1;36(10):2747-52. https://doi.org/10.1016/j.renene.2011.03.009
  • [40] Sánchez D, Cabello R, Llopis R, Arauzo I, Catalán-Gil J, Torrella E. Energy performance evaluation of R1234yf, R1234ze (E), R600a, R290 and R152a as low-GWP R134a alternatives. International Journal of Refrigeration. 2017 Feb 1;74:269-82. https://doi.org/10.1016/j.ijrefrig.2016.09.020
  • [41] Sethi A, Becerra EV, Motta SY. Low GWP R134a replacements for small refrigeration (plug-in) applications. international journal of refrigeration. 2016 Jun 1;66:64-72. https://doi.org/10.1016/j.ijrefrig.2016.02.005
  • [42] She X, Yin Y, Zhang X. A proposed subcooling method for vapor compression refrigeration cycle based on expansion power recovery. International journal of refrigeration. 2014 Jul 1;43:50-61. https://doi.org/10.1016/j.ijrefrig.2014.03.008
  • [43] She X, Yin Y, Zhang X. Thermodynamic analysis of a novel energy-efficient refrigeration system subcooled by liquid desiccant dehumidification and evaporation. Energy conversion and management. 2014 Feb 1;78:286-96. https://doi.org/10.1016/j.enconman.2013.10.057
  • [44] Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation. 1994 Sep;2(3):221-48. https://doi.org/10.1162/evco.1994.2.3.221
  • [45] Staicovici MD. A method of improving the effectiveness of a mechanical vapour compression process and of its applications in refrigeration. International journal of heat and mass transfer. 2011 Apr 1;54(9-10):1752- 62. https://doi.org/10.1016/j.ijheatmasstransfer.2011.01.016
  • [46] Topal H, Taner T, Altinsoy Y, Amirabedin E. Application of trigeneration with direct co-combustion of poultry waste and coal: A case study in the poultry industry from Turkey. Thermal Science. 2018;22(6 Part B):3073-82. https://doi.org/10.2298/TSCI170210137T
  • [47] Topal H, Taner T, Naqvi SA, Altınsoy Y, Amirabedin E, Ozkaymak M. Exergy analysis of a circulating fluidized bed power plant co-firing with olive pits: A case study of power plant in Turkey. Energy. 2017 Dec 1;140:40-6. https://doi.org/10.1016/j.energy.2017.08.042
  • [48] Taner T. Optimisation processes of energy efficiency for a drying plant: A case of study for Turkey. Applied Thermal Engineering. 2015 Apr 5;80:247-60. https://doi.org/10.1016/j.applthermaleng.2015.01.076
  • [49] Taner T, Sivrioglu M. Energy–exergy analysis and optimisation of a model sugar factory in Turkey. Energy. 2015 Dec 15;93:641-54. https://doi.org/10.1016/j.energy.2015.09.007
  • [50] Taner T, Sivrioglu M. A techno-economic & cost analysis of a turbine power plant: A case study for sugar plant. Renewable and Sustainable Energy Reviews. 2017 Oct 1;78:722-30. https://doi.org/10.1016/j.rser.2017.04.104
  • [51] Xing M, Yan G, Yu J. Performance evaluation of an ejector subcooled vapor-compression refrigeration cycle. Energy Conversion and Management. 2015 Mar 1;92:431-6. https://doi.org/10.1016/j.enconman.2014.12.091
  • [52] Yang MH, Yeh RH. Performance and exergy destruction analyses of optimal subcooling for vaporcompression refrigeration systems. International Journal of Heat and Mass Transfer. 2015 Aug 1;87:1-0. https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.085
  • [53] Yataganbaba A, Kilicarslan A, Kurtbaş İ. Exergy analysis of R1234yf and R1234ze as R134a replacements in a two evaporator vapour compression refrigeration system. International journal of refrigeration. 2015 Dec 1;60:26-37. https://doi.org/10.1016/j.ijrefrig.2015.08.010
  • [54] Yu J, Ren Y, Chen H, Li Y. Applying mechanical subcooling to ejector refrigeration cycle for improving the coefficient of performance. Energy Conversion and Management. 2007 Apr 1;48(4):1193-9. https://doi.org/10.1016/j.enconman.2006.10.009
  • [55] Zheng N, Zhao L. The feasibility of using vapor expander to recover the expansion work in two-stage heat pumps with a large temperature lift. International Journal of Refrigeration. 2015 Aug 1;56:15-27. https://doi.org/10.1016/j.ijrefrig.2014.11.010
  • [56] Zubair SM, Yaqub M, Khan SH. Second-law-based thermodynamic analysis of two-stage and mechanicalsubcooling refrigeration cycles. International Journal of Refrigeration. 1996 Nov 1;19(8):506-16. https://doi.org/10.1016/S0140-7007(96)00045-X