KUANTUM MEKANIKSEL METODLARLA 1,3-DIBENZOYLIMIDAZOLIDINE-2-THIONE BILEŞIĞININ KARAKTERIZASYONUNDAKI TEORIKSEL ÇALIŞMA

Bu çalışmada, temel haldeki 1,3-Dibenzoylimidazolidine-2-thione molekülünün optimize moleküler yapısı, titreşim frekansları, uygun mod tanımları, termodinamik özellikleri, atomik yükleri, 1H and 13C NMR kayma değerleri, ve ultraviyole spektrumu 6–31G (d,p) temel setli yoğunluk fonksiyonel teori (B3LYP) ve ab initio Hartree-Fock (HF)  metotları kullanılarak incelenildi. Elde edilen bağ açıları ve bağ uzunluklarının deneysel verilerle uyumlu olduğu görüldü. Hesaplanmış olan tüm titreşim frekansları deneysel verilerle karşılaştırıldı. Uyum katsayısı 0.9991 olarak belirlendi. Ayrıca, sadece sınır moleküler orbitallerini ve moleküler elektrostatik potansiyelini göstermekle kalmadık, geçiş durumlarını ve enerji bant aralığını da açık bir şekilde değerlendirdik. İnfrared yoğunlukları ve raman aktivite tayinleri de rapor edilmiştir. 

THEORETICAL STUDY ON THE CHARACTERIZATION OF 1,3-DIBENZOYLIMIDAZOLIDINE-2-THIONE BY QUANTUM MECHANICAL METHODS

In this study, the optimized molecular structures, vibrational frequencies, corresponding vibrational assignments, thermodynamic properties, atomic charges, 1H and 13C NMR chemical shifts, and ultra violet (UV–vis) spectra of 1,3-Dibenzoylimidazolidine-2-thione molecule have been investigated using ab initio Hartree–Fock (HF) and Density Functional Theory (B3LYP) methods at 6–31G (d,p) basis set. The bond lengths and bond angles obtained have been seen to be good agreement with the experimental data. All the calculated vibrational frequencies have been compared with each other. The correlation coefficient has been determined as 0.9991. Moreover, we have not only simulated frontier molecular orbitals (FMO) and molecular electrostatic potential (MEP) but also evaluated the transition state and energy band gap clearly. Infrared intensities and Raman activities have also been reported.

___

  • [1] C. Kazak, V. T. Yılmaz, S. Servi, M. Koca, and F.W. Heinemann, “1,3-Dibenzoylimidazolidine-2-thione and 1,3- dibenzoyl-3,4,5,6-tetrahydropyrimidine-2(1H)-thione “, Acta Crystallogr. C., 61, 348 (2005).
  • [2] M. S. Hussain, A. R. Al–Arfaj, and M. L. Hossoin, “Mixed-ligand complexes of copper (I) with heterocyclic thiones”, Transition Met. Chem., 15, 264 (1990).
  • [3] M. I. M. Wazeer, A. A. Isab, and M. Fettouhi, “New cadmium chloride complexes with imidazolidine-2-thione and its derivatives: X-ray structures, solid state and solution NMR and antimicrobial activity studies”, Polyhedron, 26, 1725 (2007).
  • [4] M. I. M. Wazeer, and A. A. Isab, “Complexations of Hg(CN)2 with imidazolidine-2-thione and its derivatives: Solid state, solution NMR and antimicrobial activity studies”, Spectrochim. Acta A, 68, 1207 (2007).
  • [5] N. O. Al–Zamil, K. A. Al–Sadhan, A. A. Isab, M. I. M. Wazeer, and A. Al–Arfaj, “Silver(I) complexes of Imidazolidine-2-thione and triphenylphosphines: Solid-State, Solution NMR and Antimicrobial Activity Studies”, Spectroscopy, 21, 61 (2007).
  • [6] S. Cesarini, A. Spalllarossa, A. Ranise, S. Schenone, C. Rosano, P. L. Colla, G. Sanna, B. Busonera, and R. Lodda, “N-Acylated and N,N '-diacylated imidazolidine-2-thione derivatives and N,N '-diacylated tetrahydropyrimidine-2(1H)-thione analogues: Synthesis and antiproliferative activity “, Eur. J. Med. Chem., 44, 1106 (2009).
  • [7] A. Ranise, A. Spallarossa, O. Bruno, S. Schenone, P. Fossa, G. Menozzi, F. Bodavalli, L. Mosti, A. Capuano, F. Mazzeo, G. Falcone, and W. Filipelli, “Synthesis of N-substituted-N-acylthioureas of 4-substituted piperazines endowed with local anaesthetic, antihyperlipidemic, antiproliferative activities and antiarrythmic, analgesic, antiaggregating actions”, Il Farmaco, 58(9), 765 (2003).
  • [8] C. Sun, H. Huang, M. Feng, X. Shi, X. Zhang, and P. Zhou, “A novel class of potent influenza virus inhibitors: Polysubstituted acylthiourea and its fused heterocycle derivatives”, Bioorg. Med. Chem. Lett., 16, 162 (2006).
  • [9] N. P. Peet, J. Malecha, M. E. LeTourneau, and S. Sunder, “Preparation of imidazo[2,1-b]quizanolin-5(3H)-ones and tricyclic systems using a novel, double displacement reaction”, J. Heterocycl. Chem., 26, 257 (1989).
  • [10] C. Ravikumar, I. H. Joe, and V. S. Jayakumar, “Charge transfer interactions and nonlinear optical properties of push-pull chromophore benzaldehyde phenylhydrazone: A vibrational approach “, Chem. Phys. Lett., 460, 552 (2008).
  • [11] Y. X. Sun, Q. L. Hao, L. D. Lu, X. Wang, and X. J. Yang, “Vibrational spectroscopic study of o-, m- and p-hydroxybenzylideneaminoantipyrines”, Spectrochim. Acta A, 75, 203 (2010).
  • [12] T. A. Mohamed, A. M. Mustafa, W. M. Zoghaib, M. S. Afifi, R. S. Farag, and Y. Badr, “Reinvestigation of benzothiazoline-2-thione and 2-mercaptobenzothiazole tautomers: Conformational stability, barriers to internal rotation and DFT calculations”, J. Mol. Struct. (Theochem), 868, 27 (2008).
  • [13] F. F. Jian, P. S. Zhao, Y. X. Hou, and F. L. Bei, “Experimental and density functional theory calculational studies on 2,3-diaryl-tetrazole-5-thione”, Chinese J. Chem., 23, 548 (2005).
  • [14] P. S. Zhao, F. F. Jian, R. R. Zhuang, and J. Zheng, “Experimental and density functional theory Calculations study on 2,3-di(p-methylphenyl)tetrazole-5-thione”, Asian J. Chem. 19, 4258 (2007).
  • [15] P. S. Zhao, J. M. Xu, W. G. Zhang, F. F. Jian, and L. Zhang, “Synthesis, characterization, and quantum chemical calculational studies on 3-p-methylphenyl-4-amino- 1, 2, 4-triazole-5-thione”, Struct. Chem., 18(6), 993 (2007).
  • [16] S. Jaiswal, A. Kushwaha, R. Prasad, R. L. Prasad, and R. A. Yadav, “Structural and vibrational studies of molecular conductors using quantum mechanical methods: 1,3-Dithiole-2-thione, 1,3-dithiole-2-one, 1,3-dioxole-2-one and 1,3-dioxole-2-thione”, Spectrochim. Acta A, 74, 16 (2009).
  • [17] D. C. Young, “Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems (Electronic) 1st ed.”, John Wiley &Sons Inc, New York, (2001).
  • [18] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange”, J. Chem. Phys., 98(7), 5648 (1993).
  • [19] P. J. Stephens, P. J. Devlin, C. F. Chabalowski, and M. J. Frisch, “Ab initio calculation of vibr0ational absorption and circular dichroism spectra using density functional force fields”, J. Phys. Chem., 98(45), 11623 (1994).
  • [20] R. Ditchfield, W. J. Hehre, and J. A. Pople, “Self-consistent molecular-orbital methods .9. extended gaussian-type basis for molecular-orbital studies of organic molecules”, J. Chem. Phys., 54, 724 (1971).
  • [21] W. J. Hehre, J. A. Pople, “Self-consistent molecular orbital methods. XIII. an extended gaussian-type basis for boron”, J. Chem. Phys., 56, 4233(1972).
  • [22] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, “Gaussian 09 user’s reference 2nd ed.”, Gaussian, Inc., Wallingford CT, (2009).
  • [23] W. Gaussview, A. E. Frisch, A. B. Nielsen, A. J. Holder, “Gaussian 03 user’s reference 1st ed.”, Gaussian Inc., Carnegie Office Park, Pittsburg, (2003).
  • [24] P.L. Polavarapu, “Abinitio vibrational raman and raman optical-activity spectra”, J. Phys. Chem., 94, 8106 (1990).
  • [25] G. Keresztury, S. Holly, J. Varga, G. Besenyei, A.Y. Wang, and J.R. Durig, “Vibrational-spectra of monothiocarbamates .2. ir and raman-spectra, vibrational assignment, conformational-analysis and ab-initio calculations of s-methyl-n, n-dimethylthiocarbamate”, Spectrochim. Acta A, 49, 2007 (1993).
  • [26] P. W. Atkins, R. S. Friedman, “Molecular quantum mechanics 3th ed.”, Dover Publ. Inc., New York, (1999).
  • [27] S. Cetin, G. Yildirim, C. Parlak, M. Akdogan, and C. Terzioglu, “Experimental and theoretical studies on the identification of p-biphenyloxycarbonylphenyl acrylate”, Spectrochim. Acta A, 79, 1024 (2011).
  • [28] G. Yildirim, Y. Zalaoglu, C. Kirilmis, M. Koca, and C. Terzioglu, “A characterization study on 2,6-dimethyl-4-nitropyridine N-oxide by density functional theory calculations”, Spectrochim. Acta A, 81, 104 (2011).
  • [29] J. B. Foresman, and A. Frisch, “Exploring chemistry with electronic structure methods 2nd ed.”, Gaussian Inc., Pittsburgh, (1996).
  • [30] J. Coates, “Interpretation of Infrared Spectra: A practical approach 1st ed.”, John Wiley & Sons Inc., Chichester, (2000).
  • [31] P. Boopalachandran, S. Kim, J. Choo, and J. Laane, “Vibrational spectra, structure, and theoretical calculations of 2-fluoro- and 3-fluoropyridine” Chem. Phys. Lett. 514, 214 (2011).
  • [32] A. A. Al-Saadi, E. J. Ocola, and J. Laane, “Intramolecular pi-type hydrogen bonding and conformations of 3-cyclopenten-1-ol. 1. theoretical calculations”, J. Phys. Chem. A, 114, 7453 (2010). [33] N. P. G. Roeges, “A guide to complete interpretation of infrared spectra of organic structure 1st ed.”, John Wiley & Sons Inc., New York, (1994).
  • [34] T. D. Klots, and W. B. Collier, “Heteroatom derivatives of indene. Part 2. Vibrational spectra of benzothiophene and benzothiazole”, Spectrochim. Acta A, 51, 1273(1995).
  • [35] L. J. Bellamy, “The infra-red spectra of complex molecules 3rd ed. ”, John Wiley & Sons Inc., New York, (1975).
  • [36] G. Varsanyi, “Assignments for Vibrational spectra of seven hundred benzene derivaties 1st ed.”, Adam Hilger, London, (1974).
  • [37] G. Fischer, A. U. Nwankwoala, M. P. Olliff, and A. P. Scott, “Vibrational-spectra of 1,2,3-triazine”, J. Mol. Spectrosc. 161, 388 (1993). [38] S. Pinchas, D. Samuel, and M. Weiss–Brody, “The infrared absorption of 18O-labelled benzamide”, J. Chem. Soc., 1688 (1961).
  • [39] C. E. Check, T. O. Faust, J. M. Bailey, B. J. Wright, T. M. Gilbert, and L. S. Sunderlin, “Addition of polarization and diffuse functions to the lanl2dz basis set for p-block elements”, J. Phys. Chem. A, 105, 8111 (2001).
  • [40] H. M. Badawi, “DFT and MP2 vibrational spectra and assignments for gauche N-methyleneformamide CH2yN–CHO”, J. Mol. Struct. (Theochem), 617, 9 (2002).
  • [41] M. V. C. Stolhandske, J. Mink, M. Sandström, I. Papai, and P. Johansson, “Vibrational spectroscopic and force field studies of N,N-dimethylthioformamide, N,N-dimethylformamide, their deuterated analogues and bis(N,N-dimethylthioformamide)mercury(II) perchlorate”, Vib. Spectrosc, 14, 207 (1997).
  • [42] G. Gece, “The use of quantum chemical methods in corrosion inhibitor studies”, Corros. Sci., 50, 2981 (2008).
  • [43] K. Fukui, “Role of frontier orbitals in chemical-reactions”, Science, 218, 747 (1987).
  • [44] D. F. V. Lewis, C. Ioannides, and D. V. Parke, “Interaction of a series of nitriles with the alcohol-inducible isoform of P450: Computer analysis of structure—activity relationships”, Xenobiotica, , 24(5), 401(1994).
  • [45] J. Olsen, and P. Jorgensen, “Linear and nonlinear response functions for an exact state and for an mcscf state”, J. Chem. Phys., 82, 3235(1985).
  • [46] T. U. Helgaker, H. J. A. Jensen, and P. J. Jorgensen, “Analytical calculation of mcscf dipole-moment derivatives”, Chem. Phys., 84, 6280(1986).
  • [47] O. Prasad, L. Sinha, N. Misra, V. Narayan, and N. Kumar, “Molecular structure and vibrational study on 2,3-dihydro-1H-indene and its derivative 1H-indene-1,3(2H)-dione by density functional theory calculations”, J. Mol. Struct., 940, 82 (2010).
  • [48] L. K. Hanson, J. Fajer, M. A. Thompson, and M. C. Zener, “Electrochromic effects of charge separation in bacterial photosynthesis: theoretical models”, J. Am. Chem. Soc., 109, 4728 (1987).
  • [49] M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, “Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold”, J. Chem. Phys., 108, 4439 (1998).
  • [50] D. Avcı, Y. Atalay, M. Şekerci, and M. Dinçer, “Molecular structure and vibrational and chemical shift assignments of 3-(2-Hydroxyphenyl)-4-phenyl-1H-1,2,4-triazole-5-(4H)-thione by DFT and ab initio HF calculations”, Spectrochim. Acta A, 73, 212 (2009).
  • [51] A. Antusek, D. Kedziera, A. Kaczmarek-Kedziera, and M. Jaszunski, “Coupled cluster study of NMR shielding of alkali metal ions in water complexes and magnetic moments of alkali metal nuclei”, Chem. Phys. Lett., 532, 1 (2012).
  • [52] A. Terenzi, G. Barone, A. P. Piccionello, G. Giorgi, A. Guarcello, and A. Pace, “Synthesis and chemical characterization of Cu-II, Ni-II and Zn-II complexes of 3,5-bis(2 '-pyridyl)-1,2,4-oxadiazole and 3-(2 '-pyridyl)5-(phenyl)-1,2,4-oxadiazole ligands”, Inorg. Chim. Acta, 373, 62 (2011)
  • [53] P. Politzer, and J. S. Murray, “The fundamental nature and role of the electrostatic potential in atoms and molecules”, Theor. Chem. Acc., 108, 134 (2002).
  • [54] C. Parlak, M. Akdogan, G. Yildirim, N. Karagoz, E. Budak, and C. Terzioglu, “Density functional theory study on the identification of 3-[(2-morpholinoethylimino)methyl]benzene-1,2-diol”, Spectrochimica. Acta Part A, 79, 263 (2011).
  • [55] F. J. Luque, J. M. Lopez, and M. Orozco, “Perspective on electrostatic interactions of a solute with a continuum. a direct utilization of ab initio molecular potentials for the prevision of solvent effects”, Theor. Chem. Acc., 103, 343 (2000).
  • [56] H. Buyukuslu, M. Akdogan, G. Yildirim, and C. Parlak, “Ab initio Hartree-Fock and density functional theory study on characterization of 3-(5-methylthiazol-2-yldiazenyl)-2-phenyl-1H-indole”, Spectrochimica. Acta Part A, 75, 1362 (2010).