ALÜMİNYUM KARE KABIN DERİN ÇEKİLMESİNDE TASLAK MALZEME ŞEKİLLERİNİN DEĞERLENDİRİLMESİ

Bu çalışmada, anizotropik alüminyum sactan hazırlanan değişik taslak malzemeşekilleri kare kap biçiminde derin çekilerek incelenmiştir. Çekilen tüm parçalardaherhangi bir yırtılma/kopma meydana gelmemiş yani kullanılabilir durumda eldeedilmişlerdir. Optimum taslak malzeme biçimleri ile çekilen kaplarda hurda malzememiktarı ve buna bağlı olarak maliyetler azalmakta ancak, hafif buruşmalar meydanagelmekte ve bu nedenle de yüzey kalitesi bozulmaktadır. Diğer taslak malzemeşekillerinden elde edilen kaplarda ise, kulaklanma/dalgalanma oldukça fazlaolduğundan hurda malzeme miktarı ve buna bağlı olarak maliyetler artmakta fakatözellikle köşelerdeki yüzey kalitesi daha iyi elde edilmektedir.

EVALUATION OF BLANK SHAPES IN DEEP DRAWING OF ALUMINUM SQUARE CUP

In this study, different blank shapes obtained fromanisotropic aluminum sheet has been investigated by drawing in theform of square cup. No any failure (tearing and fracturing) occuredin the drawn cups. Namely, they are useable. The results shown that;optimum blank shape reduces scrap metal and costs but also, leads toslightly wrinkling and bad surface quality. There are more scrapmetal and costs in the cups obtained from the otherblank shapes dueto greater earing and projection but, the surface quality especially inthe corners of the cups becomes better.

___

  • [1] Y.Q. Guo, J.L. Batoz, H. Naceur, S. Bouabdallah, S. Mercier and O. Barlet, Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach, Computers and Structures 78 (2000) 133-148 (Pergamon).
  • [2] S.H. Park, J.W. Yoon, D.Y. Yang and Y.H. Kim, Optimum blank design in sheet metal forming by the deformation path iteration method, International Journal of Mechanical Sciences 41 (1999) 1217-1232 (Pergamon).
  • [3] K. Son and H. Shim, Optimal blank shape design using the initial velocity of boundary nodes, Journal of Materials Processing Technology, 134 (2003) 92-98.
  • [4] T. Jimma, Deep drawing convex polygon shell researches on the deep drawing of sheet metal by the slip line theory, 1st report, Japan Soc. Tech. Plast. 11 (1970) 653.
  • [5] V.V. Hazek and K. Lange, Use of slip line field method in deep drawing of large irregular shaped components, Proc. 7th NAMRC, 1979, p.65.
  • [6] M. Karima, Blank development and tooling design drawn parts using a modified slip line field based approach, ASME Trans. J. Eng. Ind. 111 (1989) 345.
  • [7] J.H. Vogel and D. Lee, An analysis method for deep drawing process design, Int. J. Mech. Sci. 32 (1990) 891.
  • [8] X. Chen and R. Sowerby, The development of ideal blank shapes by the method of plane stress characteristics, Int. J. Mech. Sci. 34 (1992) 159.
  • [9] R. Sowerby, J.L. Duncan and E. Chu, The modeling of sheet metal stamping, Int. J. Mech. Sci. 28 (1986) 415.
  • [10] G.N. Blount and P.R. Stevens, Blank shape analysis for heavy gauge metal forming, J. Mater. Process. Technol. 24 (1990) 65.
  • [11] S.A. Majlessi and D. Lee, Further development of sheet metal forming analysis method, ASME Trans. J. Eng. Ind. 109 (1987) 330.
  • [12] S.A. Majlessi and D. Lee, Development of multistage sheet metal forming analysis method, J. Mater. Shaping Technol. 6 (1988) 41.
  • [13] S.A. Majlessi and D. Lee, Deep drawing of square-shaped sheet metal parts, part 1: finite element analysis, ASME Trans. J. Eng. Ind. 115 (1993) 102.
  • [14] S. Levy, C.F. Shinh, J.P.D. Wilkinson, P. Stine and R.C. McWilson, Analysis of sheet metal forming to axisymmetric shapes, in: B.A. Niemeier, A.K. Schmeider, J.R. Newby (Eds.), Formability Topics—Metallic Materials, ASTM, Toronto, Canada, 1978, p. 238.
  • [15] J.L. Batoz, Y.Q. Guo, P. Duroux, and J.M. Detraux, An efficient algorithm to estimate the large strains in deep drwing, NUMIFORM ‘89, Fort Collins, CO, USA, A.A. Balkema, Rotterdam, 1989, p. 383.
  • [16] J.L. Batoz, Y.Q. Guo, and J.M. Detraux, An inverse finite element procedure to estimate the large plastic strain in sheet metal forming, Proc. 3rd Int. Conf. on Technology of Plasticity 3, 1990, Kyoto, Japan, p. 1403.
  • [17] Y.Q. Guo, J.L. Batoz, J.M. Detraux and P. Duroux, Finite element procedures for strain estimations of sheet metal forming parts, Int. J. Numer. Methods Eng. 30 (1990) 1385.
  • [18] Y.Q. Guo, J.L. Batoz, M.El. Mouatassim, and J.M. Detraux, On the estimation of thickness strain in thin car panels by the inverse approach, in: J.L. Chenot, R.D. Wood, O.C. Zienkiewicz (Eds.), NUMIFORM ’92, Valbonne, France, A.A. Balkema, Rotterdam, 1992, p. 473.
  • [19] K. Chung and O. Richmond, Ideal forming—I. Homogeneous deformation with minimum plastic work, Int. J. Mech. Sci. 34 (1992) 575.
  • [20] K. Chung and O. Richmond, Ideal forming—II. Sheet forming with optimum deformation, Int. J. Mech. Sci. 34 (1992) 617.
  • [21] K. Chung and O. Richmond, Sheet forming process design based on ideal forming theory, in: J.L. Chenot, R.D. Wood, O.C. Zienkiewicz (Eds.), NUMIFORM ’92, Valbonne, France, A.A. Balkema, Rotterdam, 1992, p. 455.
  • [22] K. Chung and O. Richmond, The mechanics of ideal forming, J. Appl. Mech. 61 (1994) 176.
  • [23] S.H. Kim and H. Huh, Construction of sliding constraint surfaces and initial guess shapes for intermediate steps in multi-step finite element inverse analysis, Journal of Materials Processing Technology, 130-131 (2002) 482-489.
  • [24] H. Shim, K. Son and K. Kim, Optimum blank shape by sensitivity analysis, Journal of Materials Processing Technology, 104 (2000) 191-199.
  • [25] N. Kishor and D.R. Kumar, Optimization of initial blank shape to minimize earing in deep drawing using finite element method, Journal of Materials Processing Technology, 130-131 (2002) 20-30.
  • [26] W. Huaibao, X. Weili, L. Zhongqin, Y. Yuying and Z.R. Wang, Stamping and stamping simulation with a blankholder gap, Journal of Materials Processing Technology, 120 (2002) 62-67.