Utilization of genomic retrotransposons as cladistic markers

Genomik retrotranspozonlar birçok ökaryotik organizmada ana genomik komponentlerdendir. Genomdaki miktarları genellikle genom büyüklüğüyle ilişkilidir. Bu elementler genom boyunca transkripsiyon, ters transkripsiyon ve kopyalanmış elementin yeni bir genomik lokasyona tekrar insersyonundan oluşan ve retrotranspozisyon olarak adlandırılan bir yöntemle yayılırlar. Hedef bölgeler göreceli olarak spesifik değildir ve bağımsızdır. Böylece, aynı elementin farklı sınıflarda spesifik bir bölgeye entegrasyonu evrimsel zaman ölçeklerinde ihmal edilebilir. Bununla birlikte, retrotranspozonların taksonomik markör olarak kullanımı diğer moleküler ve morfolojik verileri ilginç bir şekilde tamamlar. Bu markörler ilgili bir lokusta soysal ve türevlenmiş karakter durumlarını ayırdedebilir. Belli bir türün retrotranspozon içeriği konağın evrimsel hikayesinden, retrotranspozon dizilerinin hızlı yenilenme periyodlarıyla kuvvetli bir şekilde etkilenir. Dolayısıyla, retrotranspozon entegrasyon markörleri paylaşılan bir türevlenmiş transpozisyonel olayla sınıfların ortak atalarının belirlenmesinde ideal araçlardır.

Genomik retrotranspozonların taksonomik markör olarak kullanımı

Genomic retrotransposons are major genomic components in most eukaryotic organisms. Their abundance in the genome is generally correlated with genome size. These elements spread throughout the genome by a process termed retro-transposition consisting of transcription, reverse transcription and reinsertion of the copied element into a new genomic location. The target sites are relatively unspecific and independent, thus, integration of the same element into specific site in different taxa is negligible over evolutionary time scales. However, utilization of retrotransposons as cladistic molecular markers represents a particularly interesting complement to other molecular and morphological data. These markers can differentiate between ancestral and derived character state at a respective locus. Retrotransposon content of a given species is strongly influenced by the host evolutionary history, with periods of rapid turnover of retrotransposons sequences. Thus, retrotransposon integration markers are an ideal tool for determining the common ancestry of taxa by a shared derived transpositional event.

___

  • Ashalatha S N, Teo C H, Schwarzacher T., Heslop- Harrison J S. Genome classification of banana cultivars from South India using IRAP markers. Euphytica 144(3): 285-290, 2005.
  • Baumel A, Ainouche M, Kalendar R, Schulman A H . Inter-retrotransposon amplified polymorphism (IRAP), and retotransposonmicrosatellite amplified polymorphism (REMAP) in populations of the young allopolyploid species Spartina (Spartina SP.) angelica Hubbard (Poaceae). Mol Biol Evol 19: 1218-1227, 2002.
  • Boyko E, Kalendar R, Korzun V, Gill B, Schulman AH . Combined mapping of Aegilops 20 tauschii by retrotransposon, microsatellite, and gene markers. Plant Mol Biol 48: 767-790, 2002.
  • Branco C. J. S, Vieira E. A., Malone G., Kopp M. M., Malone E., Bernardes A., Mistura C. C., Carvalho F. I.F., Oliveira C. A.. IRAP and REMAP assessments of genetic similarity in Rice (Oryza sativa .) J Appl Genet 48(2): 107–113, 2007.
  • Brik A F, Kalendar R.N., Stratula O.R., Sivolap Yu.M.. IRAP and REMAP analyses of Barley (Hordeum vulgare) varieties of Odessa breeding. Cytology and Genetics, 3: 24-33, 2006.
  • Chadha S. and Gopalakrishna T. Retrotransposon- microsatellite amplified polymorphism (REMAP) markers for genetic diversity assessment of the Rice (Oryza sativa .) blast pathogen (Magnaporthe grisea) Genome 48:943–945, 2005.
  • Chesnay C, Kumar A, Pearce SR. Genetic diversity of SIRE-1 retroelements in annual and perennial Glycine species revealed using SSAP. Cell Mol Biol Lett.12(1):103-10, 2007.
  • Eickbush TH, Malik HS. Origins and evolution of retrotransposons. In MobileDNA II, ed. NL Craig, R Craigie,MGellert,AMLambowitz, pp. 1111–144.Washington, DC: ASM Press,2002.
  • Ellis T.H.N., Poyser S.J., Knox,M.R., Vershinin, A.V. and Ambrose M.J. Ty1-copia class retrotransposon insertion site polymorphism for linkage and diversity analysis in pea. Mol. Gen. Genet. 260: 9–19,1998.
  • Feschotte C, Jiang N and Wessler S R. Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3: 329–341, 2002.
  • Flavell A J, Knox M R, Pearce S R and Ellis T H N,.Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J. 16: 643–650, 1998.
  • Gao L, McCarthy EM, Ganko EW, McDonald JF. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the Rice (Oryza sativa .) genome sequences. BMC Genomics.2;5(1):18, 2004.
  • García-Martínez J and Martínez-Izquierdo J.A. Study on the evolution of the Grande retrotransposon in the Zea genus. Mol. Biol. Evol. 20: 831–841, 2003.
  • Grandbastien M. A, C. AudeonE, Bonnivard JM, Casacuberta B, Chalhoub A.-P.P, Costa Q.H, Lea D, Melayah M., Petit C, Poncet S.M, Tam M.-A, Van Sluys C and Mhiria. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res 110:229–241, 2005.
  • Hagan CR and Rudin CM. Mobile genetic element activation and genotoxic cancer therapy: potential clinical implications. Am J Pharmacogenomics. 2(1): 25-35, 2002.
  • Hamdi H, Nishio H, Zielinski R, Dugaiczyk A . Origin and phylogenetic distribution of Alu DNA repeats: irreversible events in the evolution of primates. J Mol Biol 289: 861–871,1999.
  • Havecker, E. R., Gao X. and Voytas D. F. The diversity of LTR retrotransposons. Genome Biol. 5: 225, 2004.
  • Hedges D J and Batzer M A. From the margins of the genome: mobile elements shape primate evolution. Bioessays 27, 785–794, 2005.
  • Hirochika H: Activation of plant retrotransposons by stress, in Oono K, Takaiwa F (eds): Modification of Gene Expression and Non-Mendelien Inheritance, pp 15–21 (National Institute of Agrobiological Resources,Tsukuba), 1995.
  • IHGSC (International Human Genome Sequencing Consortium): Initial sequencing and analysis of the human genome. Nature 409:860–921, 2001.
  • Jing R., Knox M. R., Lee J. M., Vershinin A. V, Ambrose M., Ellis T. H. Nl and Flavell A J. Insertional polymorphism and antiquity of PDR1 retrotransposon insertions in Pisum species. Genetics 171, 741–752, 2005.
  • Jurka J. Evolutionary impact of human Alu repetitive elements. Curr. Opin. Genet. Dev. 14: 603–608, 2004.
  • Jurka J., Kapitonov V., Kohany O., and Jurka, M.l.V. Repetitive Sequences in Complex Genomes: Structure and Evolution. Annu. Rev. Genomics Hum. Genet..8:241–59, 2007.
  • Kalendar R, Grob T, Regina M, Suomeni A, Schulman A. IRAP and REMAP: two new retrotransposon- based DNA fingerprinting techniques. Theoretical and Applied Genetics 98: 704–711, 1999.
  • Kalendar R., Schulman H.A.. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols, 1(5): 2478 –2484, 2006.
  • King R. C. and Stansfield, W. D.. A Dictionary of Genetics. Fifth Edition. Oxford University Press. 1997.
  • Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J. Retroposed Elements as Archives for the Evolutionary History of Placental Mammals. PLoS Biol 4(4): e91.[1],2006.
  • Kulpa D.A and Moran J.V.. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat. Struct. Mol. Biol.13: 655–60, 2006.
  • Kumar A. and Bennetzen J. L. Plant Retrotransposon. Annual Review of Genetics. 33: 479-532, 1999.
  • Kumar A. and Hirohiko H. Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci.6(3):127-34, 2001.
  • Lanteri s, Acquadro A, Comino C, Mauro R, Mauromicale G, Portis E. A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, MAFLP and microsatellite markers. Theor. Appl. Genet. 112: 1532–1542, 2006.
  • Leigh F., Kalendar R. , Lea V. , Lee D. ,Donini P. and Schulman A. H...Comparison of the utility of Barley (Hordeum vulgare) retrotransposon families for genetic analysis by molecular marker techniques. Mol. Genet. Genomics 269: 464–474, 2003.
  • Manninen O M , Jalli M., Kalendar R., Schulman A., Afanasenko O., and Robinson J. Mapping of major spot-type and net-type netblotch resistance genes in the Ethiopian Barley (Hordeum vulgare) line CI 9819. Genome 49: 1564–1571. 2006.
  • Manninen O, Kalendar R, Robinson J, Schulman AH,. Application of BAR/M retrotransposons markers to the mapping of a major resistance gene for net blotch in Barley (Hordeum vulgare). Mol Gen Genet 264: 325–334, 2000.
  • Mansour, A. Epigenetic activation of Genomic Retrotransposon. Journal of Cell and Molecular Biology. 6 (2): 99-107, 2007.
  • Nagy, E.D., Molnar, I., Schneider, A., Kovacs, G. & Molnar-Lang, M.Characterization of chromosome-specific S-SAP markers and their use in studying genetic diversity in Aegilops species. Genome 49: 289–296 ,2006.
  • Nikaido M, Rooney AP, Okada N () Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: Hippopotamuses are the closest extant relatives of whales. Proc Natl Acad Sci U S A 96: 10261–10266,1999.
  • Ostertag, E.M. & Kazazian, H.H. Genetics: LINEs in mind. Nature 435: 890–891,2005.
  • Pearce SR, Knox M, Ellis THN, Flavell AJ, 10 Kumar A. Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genet 263: 898-907, 2000.
  • Pearce, S.R., Knox, M., Ellis, T.H.N., Flavell, A.J., and Kumar, A. 2000. Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol. Gen. Genet. 263: 898–907.
  • Petit M, Lim KY, Julio E, Poncet C, Dorlhac de Borne F, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C. Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Genet Genomics. 278(1):1-15, 2007.
  • Pierce B. A. Genetics: A conceptual approach. Freeman. P: 311, 2005.
  • Porceddu, A. et al. Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L. Mol. Genet. Genomics 267: 107–114,2002.
  • Queen, R.A., Gribbon, B.M., James, C., Jack, P. & Flavell, A.J. Retrotransposonbased molecular markers for linkage and genetic diversity analysis in wheat. Mol. Genet. Genomics 271: 91–97,2004.
  • Ramsay L., Macaulay M., Cardle L., Morgante M., Ivanissevich S. d., Maestri E. , Powell W. and Waugh R. 1 Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK, Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in Barley (Hordeum vulgare). Plant J. 17:415–425, 1999.
  • Roos C, Schmitz J, Zischler H . Primate jumping genes elucidate strepsirrhine phylogeny. Proc Natl Acad Sci U S A 101: 10650–10654, 2004.
  • Sabot F. and Schulman A.H. Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97: 381–388, 2006.
  • Salem AH, Ray DA, Xing J, Callinan PA, Myers JS, Hedges DJ, Garber RK, Witherspoon DJ, Jorde LB, Batzer MA . Alu elements and hominid phylogenetics. Proc Natl Acad Sci U S A 100: 12787–12791, 2003.
  • Sanmiguel, P., A. Tikhonov, Y. K. Jin, N. Motchoulskaia, D. Zakharov et al., Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768, 1996.
  • Santangelo AM, de Souza FSJ, Franchini LF, Bumaschny VF, Low MJ, et al. Ancient Exaptation of a CORE-SINE Retroposon into a Highly Conserved Mammalian Neuronal Enhancer of the Proopiomelanocortin Gene. PLoS Genet 3,10 : e166, 2007.
  • Sanz A. M., Gonzalez S. G. · Syed N. H., Suso M. J., Saldaña C. C. and Flavell A. J.. Genetic diversity analysis in Vicia species using retrotransposon- based SSAP markers. Mol Genet Genomics 278:433–441, 2007.
  • Schulman, A.H. and Kalendar, R. Amovable feast: diverse retrotransposons and theircontribution to Barley (Hordeum vulgare) genome dynamics. Cytogenet. Genome Res. 110: 598–605, 2005.
  • Shedlock AM and Okada N . SINE insertions: Powerful tools for molecular systematics. Bioessays 22: 148–160, 2000.
  • Stribinskis V and Ramos KS. Activation of human long interspersed nuclear element 1 retrotransposition by benzo(a)pyrene, an ubiquitous environmental carcinogen. Cancer Res.66(5):2616-20, 2006.
  • Sun FJ, Fleurdepine S, Bousquet-Antonelli C, Caetano-Anolles G and Deragon JM. Common evolutionary trends for SINE RNA structures. Trends Genet. 23: 26–33, 2007.
  • Syed NH, Sørensen AP, Antonise R, van de Wiel C, van der Linden CG, van 't, Westende W, Hooftman DA, den Nijs HC, Flavell AJ. A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theor. Appl. Genet.112, 517–527, 2006.
  • Tahara M., Aoki T., Suzuka S., Yamashita H., Tanaka M., Matsunaga S. and Kokumai S. Isolation of an active element from a highcopy- number family of retrotransposons in the sweetpotato genome. Mol. Genet. Genomics 272, 116–127, 2004.
  • Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR and Grandbastien MA. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon- based SSAP, AFLP and SSR. Theor. Appl. Genet. 110: 819–831, 2005.
  • Tanhuanpää P, Kalendar R, Schulman AH, Kiviharju E. A major gene for grain cadmium accumulation in oat (Avena sativa L.). Genome. 50(6): 588-94, 2007.
  • Tatout C, Warwick S, Lenoir A, Deragon J-M. Sine insertions as clade markers for wild Crucifer species. Mol Biol Evol 16: 1614-1621, 1999.
  • Teo C.H., Tan S.H., Ho C.L., Faridah Q.Z., Othman Y.R., Heslop-Harrison J.S., Kalendar R., Schulman A. H. Genome constitution and classification using retrotransposon-based markers in the orphan crop banana. Journal of Plant Biology 48(1): 96-105, 2005.
  • Teo CH, Tan SH, Othman YR, Schwarzacher T . The Cloning of Ty1-copia-like Retrotransposons from 10 Varieties of Banana (Musa Sp.). J Biochem Mol Biol Biophys 6: 193-201, 2002
  • Tsumura Y., Ohba K., and Strauss S.H. Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica). Theoretical and applied genetics 92: 40-45,1996.
  • Venturi S., Dondini L., Donini P. and Sansavini S. Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theor. Appl. Genet. 112: 440–444, 2006.
  • Vershinin A. V., Alnutt T. R., Knox M. R., Ambrose M. R. and Ellis T. H. N., Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution and domestication. Mol. Biol. Evol. 20: 2067–2075, 2003.
  • Vitte C. and Panaud O.. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res . 110: 91-107, 2005.
  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BT, Powell W Genetic distribution of BARE-1 retrotransposable elements in the Barley (Hordeum vulgare) genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253: 687–694,1997.
  • Xiong, Y.and Eickbush T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353–3362,1990.
  • Yu, G.-X. and Wise, R.P. An anchored AFLP and retrotransposon-based map of diploid Avena. Genome 43: 736–749 ,2000.